Марковские процессы: примеры. Марковский случайный процесс

В предыдущих лекциях мы научились имитировать наступление случайных событий. То есть мы можем разыграть — какое из возможных событий наступит и в каком количестве. Чтобы это определить, надо знать статистические характеристики появления событий, например, такой величиной может быть вероятность появления события, или распределение вероятностей разных событий, если типов этих событий бесконечно много.

Но часто еще важно знать, когда конкретно наступит то или иное событие во времени.

Когда событий много и они следуют друг за другом, то они образуют поток . Заметим, что события при этом должны быть однородными, то есть похожими чем-то друг на друга. Например, появление водителей на АЗС, желающих заправить свой автомобиль. То есть, однородные события образуют некий ряд. При этом считается, что статистическая характеристика этого явления (интенсивность потока событий) задана. Интенсивность потока событий указывает, сколько в среднем происходит таких событий за единицу времени. Но когда именно произойдет каждое конкретное событие надо определить методами моделирования. Важно, что, когда мы сгенерируем, например, за 200 часов 1000 событий, их количество будет равно примерно величине средней интенсивности появления событий 1000/200 = 5 событий в час, что является статистической величиной, характеризующей этот поток в целом.

Интенсивность потока в некотором смысле является математическим ожиданием количества событий в единицу времени. Но реально может так оказаться, что в один час появится 4 события, в другой — 6, хотя в среднем получается 5 событий в час, поэтому одной величины для характеристики потока недостаточно. Второй величиной, характеризующей насколько велик разброс событий относительно математического ожидания, является, как и ранее, дисперсия. Собственно именно эта величина определяет случайность появления события, слабую предсказуемость момента его появления. Про эту величину мы расскажем в следующей лекции.

Поток событий — это последовательность однородных событий, наступающих одно за другим в случайные промежутки времени. На оси времени эти события выглядят как показано на рис. 28.1 .


Примером потока событий могут служить последовательность моментов касания взлетной полосы самолетами, прилетающими в аэропорт.

Интенсивность потока λ — это среднее число событий в единицу времени. Интенсивность потока можно рассчитать экспериментально по формуле: λ = N /T н , где N — число событий, произошедших за время наблюдения T н .

Если интервал между событиями τ j равен константе или определен какой-либо формулой в виде: t j = f (t j – 1) , то поток называется детерминированным . Иначе поток называется случайным .

Случайные потоки бывают:

  • ординарные : вероятность одновременного появления двух и более событий равна нулю;
  • стационарные : частота появления событий λ (t ) = const(t ) ;
  • без последействия : вероятность появления случайного события не зависит от момента совершения предыдущих событий.

Пуассоновский поток

За эталон потока в моделировании принято брать пуассоновский поток .

Пуассоновский поток — это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t 0 , t 0 + τ ) произойдет m событий, определяется из закона Пуассона:

где a — параметр Пуассона.

Если λ (t ) = const(t ) , то это стационарный поток Пуассона (простейший). В этом случае a = λ · t . Если λ = var(t ) , то это нестационарный поток Пуассона .

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0 ) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P 0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ , тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

Вероятность появления хотя бы одного события (P ХБ1С ) вычисляется так:

так как P ХБ1С + P 0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, — другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t ), тем больше вероятность того, что событие произойдет — график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).

Если увеличивать λ , то при наблюдении за событием в течение одного и того же времени τ , вероятность наступления события возрастает (см. рис. 28.4 ). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

Изучая закон, можно определить, что: m x = 1/λ , σ = 1/λ , то есть для простейшего потока m x = σ . Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток — поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале m x – σ < τ j < m x + σ . Хотя ясно, что в среднем оно примерно равно: τ j = m x = T н /N . Событие может появиться в любой момент времени, но в пределах разброса этого момента τ j относительно m x на [–σ ; +σ ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r — равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ — интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом — в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час] ). Необходимо промоделировать этот процесс в течение T н = 100 часов . m = 1/λ = 24/8 = 3 , то есть в среднем одна деталь за три часа. Заметим, что σ = 3 . На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3 .

Моделирование неординарных потоков событий

Если известно, что поток не является ординарным, то необходимо моделировать кроме момента возникновения события еще и число событий, которое могло появиться в этот момент. Например, вагоны на железнодорожную станцию прибывают в составе поезда в случайные моменты времени (ординарный поток поездов). Но при этом в составе поезда может быть разное (случайное) количество вагонов. В этом случае о потоке вагонов говорят как о потоке неординарных событий.

Допустим, что M k = 10 , σ = 4 (то есть, в среднем в 68 случаях из 100 приходит от 6 до 14 вагонов в составе поезда) и их число распределено по нормальному закону. В место, отмеченное (*) в предыдущем алгоритме (см. рис. 28.6 ), нужно вставить фрагмент, показанный на рис. 28.8 .

Пример 2 . Очень полезным в производстве является решение следующей задачи. Каково среднее время суточного простоя оборудования технологического узла, если узел обрабатывает каждое изделие случайное время, заданное интенсивностью потока случайных событий λ 2 ? При этом экспериментально установлено, что привозят изделия на обработку тоже в случайные моменты времени, заданные потоком λ 1 партиями по 8 штук, причем размер партии колеблется случайно по нормальному закону с m = 8 , σ = 2 (см. лекцию 25). До начала моделирования T = 0 на складе изделий не было. Необходимо промоделировать этот процесс в течение T н = 100 часов.

На рис. 28.9 представлен алгоритм, генерирующий случайным образом поток прихода партий изделий на обработку и поток случайных событий — выхода партий изделий с обработки.

На рис. 28.10 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию, и моменты времени, когда детали покидали операцию. На третьей линии видно, сколько деталей стояло в очереди на обработку (лежало на складе узла) в разные моменты времени.

Отмечая для обрабатывающего узла времена, когда он простаивал в ожидании очередной детали (см. на рис. 28.10 участки времени, выделенные красной штриховкой), мы можем посчитать суммарное время простоев узла за все время наблюдения, а затем рассчитать среднее время простоя в течение суток. Для данной реализации это время вычисляется так:

T пр. ср. = 24 · (t 1 пр. + t 2 пр. + t 3 пр. + t 4 пр. + … + t N пр.)/T н .

Задание 1 . Меняя величину σ , установите зависимость T пр. ср. (σ ) . Задавая стоимость за простой узла 100 евро/час, установите годовые потери предприятия от нерегулярности в работе поставщиков. Предложите формулировку пункта договора предприятия с поставщиками «Величина штрафа за задержку поставки изделий».

Задание 2 . Меняя величину начального заполнения склада, установите, как изменятся годовые потери предприятия от нерегулярности в работе поставщиков в зависимости от принятой на предприятии величины запасов.

Моделирование нестационарных потоков событий

В ряде случаев интенсивность потока может меняться со временем λ (t ) . Такой поток называется нестационарным . Например, среднее количество за час машин скорой помощи, покидающих станцию по вызовам населения большого города, в течение суток может быть различным. Известно, например, что наибольшее количество вызовов падает на интервалы с 23 до 01 часа ночи и с 05 до 07 утра, тогда как в остальные часы оно вдвое меньше (см. рис. 28.11 ).

В этом случае распределение λ (t ) может быть задано либо графиком, либо формулой, либо таблицей. А в алгоритме, показанном на рис. 28.6 , в место, помеченное (**), нужно будет вставить фрагмент, показанный на рис. 28.12 .

Марковские процессы были выведены учеными в 1907 году. Ведущие математики того времени развивали эту теорию, некоторые совершенствуют ее до сих пор. Эта система распространяется и в других научных областях. Практические цепи Маркова применяются в различных сферах, где человеку необходимо прибывать в состоянии ожидания. Но, чтобы четко понимать систему, нужно владеть знаниями о терминах и положениях. Главным фактором, который определяет Марковский процесс, считаются случайности. Правда, он не схож с понятием неопределенности. Для него присущи определенные условия и переменные.

Особенности фактора случайности

Это условие подчиняется статической устойчивости, точнее, ее закономерностям, которые не учитываются при неопределенности. В свою очередь, данный критерий позволяет использовать математические методы в теории Марковских процессов, как отмечал ученый, изучавший динамику вероятностей. Созданная им работа касалась непосредственно этих переменных. В свою очередь, изученный и развившийся случайный процесс, имеющий понятия состояния и перехода, а также применяемый в стохастических и математических задачах, при этом дает возможность этим моделям функционировать. Кроме всего прочего, он дает возможность совершенствоваться другим важным прикладным теоретическим и практическим наукам:

  • диффузионная теория;
  • теория массового обслуживания;
  • теория надежности и прочего;
  • химия;
  • физика;
  • механика.

Сущностные особенности не запланированного фактора

Этот Марковский процесс обусловлен случайной функцией, то есть любое значение аргумента считается данной величиной или той, что принимает заранее заготовленный вид. Примерами служат:

  • колебания в цепи;
  • скорость движения;
  • шероховатость поверхности на заданном участке.

Также принято считать, что фактом случайной функции выступает время, то есть происходит индексация. Классификация имеет вид состояния и аргумент. Этот процесс может быть с дискретными, а также непрерывными состояниями или временем. Причем случаи разные: все происходит или в одном, или в другом виде, или одновременно.

Детальный разбор понятия случайности

Построить математическую модель с необходимыми показателями эффективности в явно аналитическом виде было достаточно сложно. В дальнейшем реализовать данную задачу стало возможно, ведь возник Марковский случайный процесс. Разбирая детально это понятие, необходимо вывести некоторую теорему. Марковский процесс - это физическая система, изменившая свое положение и состояние, которые заранее не были запрограммированы. Таким образом, выходит, что в ней протекает случайный процесс. Например: космическая орбита и корабль, который выводится на нее. Результат достигнут лишь благодаря каким-то неточностям и корректировкам, без этого не реализуется заданный режим. Большинству происходящих процессов присущи случайность, неопределенность.

По существу вопроса, практически любой вариант, который можно рассмотреть, будет подвержен этому фактору. Самолет, техническое устройство, столовая, часы - все это подвержено случайным изменениям. Причем данная функция присуща любому происходящему процессу в реальном мире. Однако пока это не касается индивидуально настроенных параметров, происходящие возмущения воспринимаются как детерминированные.

Понятие Марковского случайного процесса

Проектировка какого-либо технического или механического прибора, устройства вынуждает создателя учитывать различные факторы, в частности неопределенности. Вычисление случайных колебаний и возмущений возникает в момент личной заинтересованности, например, при реализации автопилота. Некоторые процессы, изучаемые в науках вроде физики и механики, являются таковыми.

Но обращать на них внимание и проводить скрупулезные исследования следует начинать в тот момент, когда это непосредственно нужно. Марковский случайный процесс имеет следующее определение: характеристика вероятности будущего вида зависит от состояния, в котором он находится в данный момент времени, и не имеет отношения к тому, как выглядела система. Итак, данное понятие указывает на то, что результат можно предсказать, учитывая лишь вероятность и забыв про предысторию.

Подробное токование понятия

В настоящий момент система находится в определенном состоянии, она переходит и меняется, предсказать, что будет дальше, по сути, невозможно. Но, учитывая вероятность, можно сказать, что процесс будет завершен в определенном виде или сохранит предыдущий. То есть будущее возникает из настоящего, забывая о прошлом. Когда система или процесс переходит в новое состояние, то предысторию обычно опускают. Вероятность в Марковских процессах играет немаловажную роль.

Например, счетчик Гейгера показывает число частиц, которое зависит от определенного показателя, а не от того, в какой именно момент оно пришло. Здесь главным выступает вышеуказанный критерий. В практическом применении могут рассматриваться не только Марковские процессы, но и подобные им, к примеру: самолеты участвуют в бою системы, каждая из которых обозначена каким-либо цветом. В данном случае главным критерием вновь выступает вероятность. В какой момент произойдет перевес в числе, и для какого цвета, неизвестно. То есть этот фактор зависит от состояния системы, а не от последовательности гибели самолетов.

Структурный разбор процессов

Марковским процессом называется любое состояние системы без вероятностного последствия и без учета предыстории. То есть, если включить будущее в настоящее и опустить прошлое. Перенасыщение данного времени предысторией приведет к многомерности и выведет сложные построения цепей. Поэтому лучше эти системы изучать простыми схемами с минимальными числовыми параметрами. В результате эти переменные считаются определяющими и обусловленными какими-либо факторами.

Пример Марковских процессов: работающий технический прибор, который в этот момент исправен. В данном положении вещей интерес представляет вероятность того, что устройство будет функционировать еще длительный период времени. Но если воспринимать оборудование как отлаженное, то этот вариант уже не будет принадлежать к рассматриваемому процессу ввиду того, что нет сведений о том, сколько аппарат работал до этого и производился ли ремонт. Однако если дополнить эти две переменные времени и включить их в систему, то ее состояние можно отнести к Марковскому.

Описание дискретного состояния и непрерывности времени

Модели Марковских процессов применяются в тот момент, когда необходимо пренебречь предысторией. Для исследования в практике наиболее часто встречаются дискретные, непрерывные состояния. Примерами такой ситуации являются: в структуру оборудования входят узлы, которые в условиях рабочего времени могут выйти из строя, причем происходит это как незапланированное, случайное действие. В результате состояние системы подвергается ремонту одного или другого элемента, в этот момент какой-то из них будет исправен или они оба будут отлаживаться, или наоборот, являются полностью налаженными.

Дискретный Марковский процесс основан на теории вероятности, а также является переходом системы из одного состояния в другое. Причем данный фактор происходит мгновенно, даже если происходят случайные поломки и ремонтные работы. Чтобы провести анализ такого процесса, лучше использовать графы состояний, то есть геометрические схемы. Системные состояния в таком случае обозначены различными фигурами: треугольниками, прямоугольниками, точками, стрелками.

Моделирование данного процесса

Марковские процессы с дискретными состояниями - возможные видоизменения систем в результате перехода, осуществляющегося мгновенно, и которые можно пронумеровать. Для примера можно построить график состояния из стрелок для узлов, где каждая будет указывать путь различно направленных факторов выхода из строя, рабочего состояния и т. д. В дальнейшем могут возникать любые вопросы: вроде того, что не все геометрические элементы указывают верное направление, ведь в процессе способен испортиться каждый узел. При работе важно учитывать и замыкания.

Марковский процесс с непрерывным временем происходит тогда, когда данные заранее не фиксируются, они происходят случайно. Переходы ранее были не запланированы и происходят скачками, в любой момент. В данном случае вновь главную роль играет вероятность. Однако, если сложившаяся ситуация относится к указанной выше, то для описания потребуется разработать математическую модель, но важно разбираться в теории возможности.

Вероятностные теории

Данные теории рассматривают вероятностные, имеющие характерные признаки вроде случайного порядка, движения и факторов, математические задачи, а не детерминированные, которые являются определенными сейчас и потом. Управляемый Марковский процесс имеет фактор возможности и основан на нем. Причем данная система способна переходить в любое состояние мгновенно в различных условиях и временном промежутке.

Чтобы применять эту теорию на практике, необходимо владеть важными знаниями вероятности и ее применения. В большинстве случаев каждый пребывает в состоянии ожидания, которое в общем смысле и есть рассматриваемая теория.

Примеры теории вероятности

Примерами Марковских процессов в данной ситуации могут выступать:

  • кафе;
  • билетные кассы;
  • ремонтных цеха;
  • станции различного назначения и пр.

Как правило, люди ежедневно сталкиваются с этой системой, сегодня она носит название массового обслуживания. На объектах, где присутствует подобная услуга, есть возможность требования различных запросов, которые в процессе удовлетворяются.

Скрытые модели процесса

Такие модели являются статическими и копируют работу оригинального процесса. В данном случае основной особенностью является функция наблюдения за неизвестными параметрами, которые должны быть разгаданы. В результате эти элементы могут использоваться в анализе, практике или для распознавания различных объектов. Обычные Марковские процессы основаны на видимых переходах и на вероятности, в скрытой модели наблюдаются только неизвестные переменные, на которые оказывает влияние состояние.

Сущностное раскрытие скрытых Марковских моделей

Также она имеет распределение вероятности среди других значений, в результате исследователь увидит последовательность символов и состояний. Каждое действие имеет распределение по вероятности среди других значений, ввиду этого скрытая модель дает информацию о сгенерированных последовательных состояниях. Первые заметки и упоминания о них появились в конце шестидесятых годов прошлого столетия.

Затем их стали применять для распознавания речи и в качестве анализаторов биологических данных. Кроме того, скрытые модели распространились в письме, движениях, информатике. Также эти элементы имитируют работу основного процесса и пребывают в статике, однако, несмотря на это, отличительных особенностей значительно больше. В особенности данный факт касается непосредственного наблюдения и генерирования последовательности.

Стационарный Марковский процесс

Данное условие существует при однородной переходной функции, а также при стационарном распределении, считающимся основным и, по определению, случайным действием. Фазовым пространством для данного процесса является конечное множество, но при таком положении вещей начальная дифференциация существует всегда. Переходные вероятности в данном процессе рассматриваются при условиях времени или дополнительных элементах.

Детальное изучение Марковских моделей и процессов выявляет вопрос об удовлетворении равновесия в различных сферах жизни и деятельности общества. С учетом того, что данная отрасль затрагивает науку и массовое обслуживание, ситуацию можно исправить, проанализировав и спрогнозировав исход каких-либо событий или действий тех же неисправных часов или техники. Чтобы полностью использовать возможности Марковского процесса, стоит детально в них разбираться. Ведь этот аппарат нашел широкое применение не только в науке, но и в играх. Эта система в чистом виде обычно не рассматривается, а если и используется, то только на основе вышеупомянутых моделей и схем.

Федеральное агентство по образованию РФ

ФГОУ СПО «Перевозский строительный колледж»

Курсовая работа

по дисциплине «Математические методы»

на тему «СМО с ограниченным временем ожидания. Замкнутые СМО»

Введение.......................................................................................................... 2

1. Основы теории массового обслуживания.................................................. 3

1.1 Понятие случайного процесса.................................................................. 3

1.2 Марковский случайный процесс.............................................................. 4

1.3 Потоки событий......................................................................................... 6

1.4 Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний......................................................................................................... 9

1.5 Задачи теории массового обслуживания............................................... 13

1.6 Классификация систем массового обслуживания.................................. 15

2. Системы массового обслуживания с ожиданием..................................... 16

2.1 Одноканальная СМО с ожиданием........................................................ 16

2.2 Многоканальная СМО с ожиданием...................................................... 25

3. Замкнутые СМО........................................................................................ 37

Решение задачи............................................................................................. 45

Заключение.................................................................................................... 50

Список литературы....................................................................................... 51


В данном курсе мы будем рассматривать различные системы массового обслуживания (СМО) и сети массового обслуживания (СеМО).

Под системой массового обслуживания (СМО) понимают динамическую систему, предназначенную для эффективного обслуживания потока заявок (требований на обслуживание) при ограничениях на ресурсы системы.

Модели СМО удобны для описания отдельных подсистем современных вычислительных систем, таких как подсистема процессор - основная память, канал ввода-вывода и т. д. Вычислительная система в целом представляет собой совокупность взаимосвязанных подсистем, взаимодействие которых носит вероятностный характер. Заявка на решение некоторой задачи, поступающая в вычислительную систему, проходит последовательность этапов счета, обращения к внешним запоминающим устройствам и устройствам ввода-вывода. После выполнения некоторой последовательности таких этапов, число и продолжительность которых зависит от трудоемкости программы, заявка считается обслуженной и покидает вычислительную систему. Таким образом, вычислительную систему в целом можно представлять совокупностью СМО, каждая из которых отображает процесс функционирования отдельного устройства или группы однотипных устройств, входящих в состав системы.

Совокупность взаимосвязанных СМО называется сетью массового обслуживания (стохастической сетью).

Для начала мы рассмотрим основы теории СМО, затем перейдем к ознакомлению в подробном содержании к СМО с ожиданием и замкнутым СМО. Также в курс включена практическая часть, в которой мы подробно познакомимся с тем, как применить теорию на практике.


Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позиций полной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности .

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системе S протекает случайный процесс , если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры:

1. Система S – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

Случайный процесс, протекающий в системе, называется Марковским , если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянии S 0 . Мы знаем характеристики состояния системы в настоящем и все, что было при t <t 0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет при t >t 0 ? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое время система S окажется в состоянии S 1 или останется в состоянии S 0 и т.д.

Пример . Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество «красных» самолетов, y – количество «синих» самолетов. К моменту времени t 0 количество сохранившихся (не сбитых) самолетов соответственно – x 0 , y 0 . Нас интересует вероятность того, что в момент времени численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времени t 0 , а не от того, когда и в какой последовательности погибали сбитые до момента t 0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предыстории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием , если его возможные состояния S 1 , S 2 , … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем , если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Пример . Технологическая система (участок) S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S 0 - оба станка исправны;

S 1 - первый станок ремонтируется, второй исправен;

S 2 - второй станок ремонтируется, первый исправен;

S 3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний . Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в состояние. Для нашего примера граф состояний приведен на рис. 1.

Рис. 1. Граф состояний системы

Примечание. Переход из состояния S 0 в S 3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.

В предыдущем примере – это поток отказов и поток восстановлений. Другие примеры: поток вызовов на телефонной станции, поток покупателей в магазине и т.д.

Поток событий можно наглядно изобразить рядом точек на оси времени O t – рис. 2.

Рис. 2. Изображение потока событий на оси времени

Положение каждой точки случайно, и здесь изображена лишь какая-то одна реализация потока.

Интенсивность потока событий ( ) – это среднее число событий, приходящееся на единицу времени.

Рассмотрим некоторые свойства (виды) потоков событий.

Поток событий называется стационарным , если его вероятностные характеристики не зависят от времени.

В частности, интенсивность стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Поток событий называется потоком без последствий , если для любых двух непересекающихся участков времени и (см. рис. 2) число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты времени независимо друг от друга и вызваны каждое своими собственными причинами.

Поток событий называется ординарным , если события в нем появляются поодиночке, а не группами по нескольку сразу.

Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами:

1) стационарен;

2) ординарен;

3) не имеет последствий.

Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую роль, как и закон нормального распределения среди других законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.

Для простейшего потока с интенсивностью интервал T между соседними событиями имеет так называемое показательное (экспоненциальное) распределение с плотностью:

где - параметр показательного закона.

Для случайной величины T , имеющей показательное распределение, математическое ожидание есть величина, обратная параметру, а среднее квадратичное отклонение равно математическому ожиданию:

Рассматривая Марковские процессы с дискретными состояниями и непрерывным временем, подразумевается, что все переходы системы S из состояния в состояние происходят под действием простейших потоков событий (потоков вызовов, потоков отказов, потоков восстановлений и т.д.). Если все потоки событий, переводящие систему S из состояния в состояние простейшие, то процесс, протекающий в системе, будет Марковским.

Итак, на систему, находящуюся в состоянии , действует простейший поток событий. Как только появится первое событие этого потока, происходит «перескок» системы из состояния в состояние (на графе состояний по стрелке ).

Для наглядности на графе состояний системы у каждой дуги проставляют интенсивности того потока событий, который переводит систему по данной дуге (стрелке). - интенсивность потока событий, переводящий систему из состояния в . Такой граф называется размеченным . Для нашего примера размеченный граф приведен на рис. 3.

Рис. 3. Размеченный граф состояний системы

На этом рисунке - интенсивности потока отказов; - интенсивности потока восстановлений.

Предполагаем, что среднее время ремонта станка не зависит от того, ремонтируется ли один станок или оба сразу. Т.е. ремонтом каждого станка занят отдельный специалист.

Пусть система находится в состоянии S 0 . В состояние S 1 ее переводит поток отказов первого станка. Его интенсивность равна:

где - среднее время безотказной работы первого станка.

Из состояния S 1 в S 0 систему переводит поток «окончаний ремонтов» первого станка. Его интенсивность равна:

где - среднее время ремонта первого станка.

Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем дугам графа. Имея в своем распоряжении размеченный граф состояний системы, строится математическая модель данного процесса.

Пусть рассматриваемая система S имеет -возможных состояний . Вероятность -го состояния - это вероятность того, что в момент времени , система будет находиться в состоянии . Очевидно, что для любого момента времени сумма всех вероятностей состояний равна единице:

Для нахождения всех вероятностей состояний как функций времени составляются и решаются уравнения Колмогорова – особого вида уравнения, в которых неизвестными функциями являются вероятности состояний. Правило составления этих уравнений приведем здесь без доказательств. Но прежде, чем его приводить, объясним понятие финальной вероятности состояния .

Что будет происходить с вероятностями состояний при ? Будут ли стремиться к каким-либо пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний .

где - конечное число состояний системы.

Финальные вероятности состояний – это уже не переменные величины (функции времени), а постоянные числа. Очевидно, что:

Финальная вероятность состояния – это по–существу среднее относительное время пребывания системы в этом состоянии.

Например, система S имеет три состояния S 1 , S 2 и S 3 . Их финальные вероятности равны соответственно 0,2; 0,3 и 0,5. Это значит, что система в предельном стационарном состоянии в среднем 2/10 времени проводит в состоянии S 1 , 3/10 – в состоянии S 2 и 5/10 – в состоянии S 3 .

Правило составления системы уравнений Колмогорова : в каждом уравнении системы в левой его части стоит финальная вероятность данного состояния , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния , а в правой его части – сумма произведений интенсивностей всех потоков, входящих в -е состояние , на вероятности тех состояний, из которых эти потоки исходят.

Пользуясь этим правилом, напишем систему уравнений для нашего примера :

.

Эту систему четырех уравнений с четырьмя неизвестными , казалось бы, можно вполне решить. Но эти уравнения однородны (не имеют свободного члена), и, значит, определяют неизвестные только с точностью до произвольного множителя. Однако можно воспользоваться нормировочным условием: и с его помощью решить систему. При этом одно (любое) из уравнений можно отбросить (оно вытекает как следствие из остальных).

Продолжение примера . Пусть значения интенсивностей потоков равны: .

Четвертое уравнение отбрасываем, добавляя вместо него нормировочное условие:

.

Т.е. в предельном, стационарном режиме система S в среднем 40% времени будет проводить в состоянии S 0 (оба станка исправны), 20% - в состоянии S 1 (первый станок ремонтируется, второй работает), 27% - в состоянии S 2 (второй станок ремонтируется, первый работает), 13% - в состоянии S 3 (оба станка ремонтируются). Знание этих финальных вероятностей может помочь оценить среднюю эффективность работы системы и загрузку ремонтных органов.

Пусть система S в состоянии S 0 (полностью исправна) приносит в единицу времени доход 8 условных единиц, в состоянии S 1 – доход 3 условные единицы, в состоянии S 2 – доход 5 условных единиц, в состоянии S 3 – не приносит дохода. Тогда в предельном, стационарном режиме средний доход в единицу времени будет равен: условных единиц.

Станок 1 ремонтируется долю времени, равную: . Станок 2 ремонтируется долю времени, равную: . Возникает задача оптимизации . Пусть мы можем уменьшить среднее время ремонта первого или второго станка (или обоих), но это нам обойдется в определенную сумму. Спрашивается, окупит ли увеличение дохода, связанное с ускорением ремонта, повышенные расходы на ремонт? Нужно будет решить систему четырех уравнений с четырьмя неизвестными.

Примеры систем массового обслуживания (СМО): телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, станочные и другие технологические системы, системы управления гибких производственных систем и т.д.

Каждая СМО состоит из какого–то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные тележки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого–то потока заявок (требований), поступающих в какие-то случайные моменты времени.

Обслуживание заявки продолжается какое–то, вообще говоря, случайное время, после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени обслуживания приводит к тому, что в какие–то периоды времени на входе СМО скапливается излишне большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными). В другие же периоды СМО будет работать с недогрузкой или вообще простаивать.

Процесс работы СМО – случайный процесс с дискретными состояниями и непрерывным временем. Состояние СМО меняется скачком в моменты появления каких-то событий (прихода новой заявки, окончания обслуживания, момента, когда заявка, которой надоело ждать, покидает очередь).

Предмет теории массового обслуживания – построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками – показателями эффективности СМО. Эти показатели описывают способность СМО справляться с потоком заявок. Ими могут быть: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди; среднее время ожидания обслуживания и т.д.

Математический анализ работы СМО очень облегчается, если процесс этой работы Марковский, т.е. потоки событий, переводящие систему из состояния в состояние – простейшие. Иначе математическое описание процесса очень усложняется и его редко удается довести до конкретных аналитических зависимостей. На практике не Марковские процессы с приближением приводятся к Марковским. Приведенный далее математический аппарат описывает Марковские процессы.

Первое деление (по наличию очередей):

1. СМО с отказами;

2. СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь – ограничена или не ограничена . Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, например, рассматриваются следующие СМО:

· СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);

· СМО с обслуживанием с приоритетом, т.е. некоторые заявки обслуживаются вне очереди и т.д.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Классификация СМО далеко не ограничивается приведенными разновидностями, но этого достаточно.

Рассмотрим простейшую СМО с ожиданием - одноканальную систему (n - 1), в которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (т.е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок в единицу (времени). Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом m, т.е. если заявка пришла в момент, когда в очереди уже стоят m-заявок, она покидает систему не обслуженной. В дальнейшем, устремив m к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.

Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

Канал свободен;

Канал занят, очереди нет;

Канал занят, одна заявка стоит в очереди;

Канал занят, k-1 заявок стоят в очереди;

Канал занят, т-заявок стоят в очереди.

ГСП показан на рис. 4. Все интенсивности потоков событий, переводящих в систему по стрелкам слева направо, равны , а справа налево - . Действительно, по стрелкам слева направо систему переводит поток заявок (как только придет заявка, система переходит в следующее состояние), справа же налево - поток «освобождений» занятого канала, имеющий интенсивность (как только будет обслужена очередная заявка, канал либо освободится, либо уменьшится число заявок в очереди).

Рис. 4. Одноканальная СМО с ожиданием

Изображенная на рис. 4 схема представляет собой схему размножения и гибели. Напишем выражения для предельных вероятностей состояний:

(5)

или с использованием: :

(6)

Последняя строка в (6) содержит геометрическую прогрессию с первым членом 1 и знаменателем р, откуда получаем:

(7)

в связи с чем предельные вероятности принимают вид:

(8).

Выражение (7) справедливо только при < 1 (при = 1 она дает неопределенность вида 0/0). Сумма геометрической прогрессии со знаменателем = 1 равна m+2, и в этом случае:

Определим характеристики СМО: вероятность отказа , относительную пропускную способность q, абсолютную пропускную способность А, среднюю длину очереди , среднее число заявок, связанных с системой , среднее время ожидания в очереди , среднее время пребывания заявки в СМО .

Вероятность отказа. Очевидно, заявка получает отказ только в случае, когда канал занят и все т-мест в очереди тоже:

(9).

Относительная пропускная способность:

(10).

Средняя длина очереди. Найдем среднее число -заявок, находящихся в очереди, как математическое ожидание дискретной случайной величины R-числа заявок, находящихся в очереди:

С вероятностьюв очереди стоит одна заявка, с вероятностью- две заявки, вообще с вероятностьюв очереди стоят k-1 заявок, и т.д., откуда:

(11).

Поскольку , сумму в (11) можно трактовать как производную по от суммы геометрической прогрессии:

Подставляя данное выражение в (11) и используя из (8), окончательно получаем:

(12).

Среднее число заявок, находящихся в системе. Получим далее формулу для среднего числа -заявок, связанных с системой (как стоящих в очереди, так и находящихся на обслуживании). Поскольку , где - среднее число заявок, находящихся под обслуживанием, а k известно, то остается определить . Поскольку канал один, число обслуживаемых заявок может равняться 0 (с вероятностью ) или 1 (с вероятностью 1 - ), откуда:

.

и среднее число заявок, связанных с СМО, равно:

(13).

Среднее время ожидания заявки в очереди. Обозначим его ; если заявка приходит в систему в какой-то момент времени, то с вероятностью канал обслуживания не будет занят, и ей не придется стоять в очереди (время ожидания равно нулю). С вероятностью она придет в систему во время обслуживания какой-то заявки, но перед ней не будет очереди, и заявка будет ждать начала своего обслуживания в течение времени (среднее время обслуживания одной заявки). С вероятностью в очереди перед рассматриваемой заявкой будет стоять еще одна, и время ожидания в среднем будет равно , и т.д.

Если же k=m+1, т.е. когда вновь приходящая заявка застает канал обслуживания занятым и m-заявок в очереди (вероятность этого ), то в этом случае заявка не становится в очередь (и не обслуживается), поэтому время ожидания равно нулю. Среднее время ожидания будет равно:

если подставить сюда выражения для вероятностей (8), получим:

(14).

Здесь использованы соотношения (11), (12) (производная геометрической прогрессии), а также из (8). Сравнивая это выражение с (12), замечаем, что иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

(15).

Среднее время пребывания заявки в системе. Обозначим - матожидание случайной величины - время пребывания заявки в СМО, которое складывается из среднего времени ожидания в очереди и среднего времени обслуживания . Если загрузка системы составляет 100%, очевидно, , в противном же случае:

.

Пример 1. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой).

Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно (m = 3). Если в очереди уже находятся три машины, очередная машина, прибывшая к станции, в очередь не становится. Поток машин, прибывающих для заправки, имеет интенсивность =1 (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин.

Определить:

вероятность отказа;

относительную и абсолютную пропускную способности АЗС;

среднее число машин, ожидающих заправки;

среднее число машин, находящихся на АЗС (включая обслуживаемую);

среднее время ожидания машины в очереди;

среднее время пребывания машины на АЗС (включая обслуживание).

Иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Находим вначале приведенную интенсивность потока заявок: =1/1,25=0,8; =1/0,8=1,25.

По формулам (8):

Вероятность отказа 0,297.

Относительная пропускная способность СМО: q=1-=0,703.

Абсолютная пропускная способность СМО: A==0,703 машины в мин.

Среднее число машин в очереди находим по формуле (12):

т.е. среднее число машин, ожидающих в очереди на заправку, равно 1,56.

Прибавляя к этой величине среднее число машин, находящихся под обслуживанием:

получаем среднее число машин, связанных с АЗС.

Среднее время ожидания машины в очереди по формуле (15):

Прибавляя к этой величине , получим среднее время, которое машина проводит на АЗС:

Системы с неограниченным ожиданием. В таких системах значение т не ограничено и, следовательно, основные характеристики могут быть получены путем предельного перехода в ранее полученных выражениях (5), (6) и т.п.

Заметим, что при этом знаменатель в последней формуле (6) представляет собой сумму бесконечного числа членов геометрической прогрессии. Эта сумма сходится, когда прогрессия бесконечно убывающая, т.е. при <1.

Может быть доказано, что <1 есть условие, при котором в СМО с ожиданием существует предельный установившийся режим, иначе такого режима не существует, и очередь при будет неограниченно возрастать. Поэтому в дальнейшем здесь предполагается, что <1.

Если, то соотношения (8) принимают вид:

(16).

При отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому q=1, .

Среднее число заявок в очереди получим из (12) при :

Среднее число заявок в системе по формуле (13) при :

.

Среднее время ожиданияполучим из формулы (14) при:

.

Наконец, среднее время пребывания заявки в СМО есть:

Система с ограниченной длиной очереди. Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди .

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

Все каналы свободны;

Занят один канал, остальные свободны;

Заняты -каналов, остальные нет;

Заняты все -каналов, свободных нет;

есть очередь:

Заняты все n-каналов; одна заявка стоит в очереди;

Заняты все n-каналов, r-заявок в очереди;

Заняты все n-каналов, r-заявок в очереди.

ГСП приведен на рис. 17. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 17. Многоканальная СМО с ожиданием

Граф типичен для процессов размножения и гибели, для которой решение ранее получено. Напишем выражения для предельных вероятностей состояний, используя обозначение : (здесь используется выражение для суммы геометрической прогрессии со знаменателем ).

Таким образом, все вероятности состояний найдены.

Определим характеристики эффективности системы.

Вероятность отказа. Поступившая заявка получает отказ, если заняты все n-каналов и все m-мест в очереди:

(18)

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

(19)

Среднее число занятых каналов. Для СМО с отказами оно совпадало со средним числом заявок, находящихся в системе. Для СМО с очередью среднее число занятых каналов не совпадает со средним числом заявок, находящихся в системе: последняя величина отличается от первой на среднее число заявок, находящихся в очереди.

Обозначим среднее число занятых каналов . Каждый занятый канал обслуживает в среднем -заявок в единицу времени, а СМО в целом обслуживает в среднем А-заявок в единицу времени. Разделив одно на другое, получим:

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

(20)

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (11), (12) - (14)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди. Рассмотрим ряд ситуаций, различающихся тем, в каком состоянии застанет систему вновь пришедшая заявка и сколько времени ей придется ждать обслуживания.

Если заявка застанет не все каналы занятыми, ей вообще не придется ждать (соответствующие члены в математическом ожидании равны нулю). Если заявка придет в момент, когда заняты все n-каналов, а очереди нет, ей придется ждать в среднем время, равное (потому что «поток освобождений» -каналов имеет интенсивность ). Если заявка застанет все каналы занятыми и одну заявку перед собой в очереди, ей придется в среднем ждать в течение времени (по на каждую впереди стоящую заявку) и т. д. Если заявка застанет в очереди -заявок, ей придется ждать в среднем в течение времени . Если вновь пришедшая заявка застанет в очереди уже m-заявок, то она вообще не будет ждать (но и не будет обслужена). Среднее время ожидания найдем, умножая каждое из этих значений на соответствующие вероятности:

(21)

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди (20) только множителем , т. е.

.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО, отличается от среднего времени ожидания на среднее время обслуживания, умноженное на относительную пропускную способность:

.

Системы с неограниченной длиной очереди. Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более m-заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятности состояний получим из формул предельным переходом (при ). Заметим, что сумма соответствующей геометрической прогрессии сходится при и расходится при >1. Допустив, что <1 и устремив в формулах величину m к бесконечности, получим выражения для предельных вероятностей состояний:

(22)

Вероятность отказа, относительная и абсолютная пропускная способность. Так как каждая заявка рано или поздно будет обслужена, то характеристики пропускной способности СМО составят:

Среднее число заявок в очереди получим при из (20):

,

а среднее время ожидания - из (21):

.

Среднее число занятых каналов , как и ранее, определяется через абсолютную пропускную способность:

.

Среднее число заявок, связанных с СМО, определяется как среднее число заявок в очереди плюс среднее число заявок, находящихся под обслуживанием (среднее число занятых каналов):

Пример 2. Автозаправочная станция с двумя колонками (n = 2) обслуживает поток машин с интенсивностью =0,8 (машин в минуту). Среднее время обслуживания одной машины:

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

Поскольку<1, очередь не растет безгранично и имеет смысл говорить о предельном стационарном режиме работы СМО. По формулам (22) находим вероятности состояний:

и т. д.

Среднее число занятых каналов найдем, разделив абсолютную пропускную способность СМО А==0,8 на интенсивность обслуживания =0,5:

Вероятность отсутствия очереди у АЗС будет:

Среднее число машин в очереди:

Среднее число машин на АЗС:

Среднее время ожидания в очереди:

Среднее время пребывания машины на АЗС:

СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом m-заявок, одновременно находящихся в очереди). В такой СМО заявка, разраставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).

Рассмотрим СМО подобного типа, предполагая, что ограничение времени ожидания является случайной величиной.

Предположим, что имеется n-канальная СМО с ожиданием, в которой число мест в очереди не ограничено, но время пребывания заявки в очереди является некоторой случайной величиной со средним значением, таким образом, на каждую заявку, стоящую в очереди, действует своего рода пуассоновский «поток уходов» с интенсивностью:

Если этот поток пуассоновский, то процесс, протекающий в СМО, будет марковским. Найдем для него вероятности состояний. Нумерация состояний системы связывается с числом заявок в системе - как обслуживаемых, так и стоящих в очереди:

нет очереди:

Все каналы свободны;

Занят один канал;

Заняты два канала;

Заняты все n-каналов;

есть очередь:

Заняты все n-каналов, одна заявка стоит в очереди;

Заняты все n-каналов, r-заявок стоят в очереди и т. д.

Граф состояний и переходов системы показан на рис. 23.

Рис. 23. СМО с ограниченным временем ожидания

Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживания всех n-каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят r-заявок, то суммарная интенсивность потока уходов будет равна .

Как видно из графа, имеет место схема размножения и гибели; применяя общие выражения для предельных вероятностей состояний в этой схеме (используя сокращенные обозначения , запишем:

(24)

Отметим некоторые особенности СМО с ограниченным ожиданием сравнительно с ранее рассмотренными СМО с «терпеливыми» заявками.

Если длина очереди не ограничена и заявки «терпеливы» (не уходят из очереди), то стационарный предельный режим существует только в случае (при соответствующая бесконечная геометрическая прогрессия расходится, что физически соответствует неограниченному росту очереди при ).

Напротив, в СМО с «нетерпеливыми» заявками, уходящими рано или поздно из очереди, установившийся режим обслуживания при достигается всегда, независимо от приведенной интенсивности потока заявок . Это следует из того, что ряд для в знаменателе формулы (24) сходится при любых положительных значениях и .

Для СМО с «нетерпеливыми» заявками понятие «вероятность отказа» не имеет смысла - каждая заявка становится в очередь, но может и не дождаться обслуживания, уйдя раньше времени.

Относительная пропускная способность, среднее число заявок в очереди. Относительную пропускную способность q такой СМО можно подсчитать следующим образом. Очевидно, обслужены будут все заявки, кроме тех, которые уйдут из очереди досрочно. Подсчитаем, какое в среднем число заявок покидает очередь досрочно. Для этого вычислим среднее число заявок в очереди:

На каждую из этих заявок действует «поток уходов» с интенсивностью . Значит, из среднего числа -заявок в очереди в среднем будет уходить, не дождавшись обслуживания, -заявок в единицу времени и всего в единицу времени в среднем будет обслуживаться -заявок. Относительная пропускная способность СМО будет составлять:

Среднее число занятых каналов по-прежнему получаем, деля абсолютную пропускную способность А на :

(26)

Среднее число заявок в очереди. Соотношение (26) позволяет вычислить среднее число заявок в очереди , не суммируя бесконечного ряда (25). Из (26) получаем:

а входящее в эту формулу среднее число занятых каналов можно найти как математическое ожидание случайной величины Z, принимающей значения 0, 1, 2,..., n с вероятностями ,:

В заключение заметим, что если в формулах (24) перейти к пределу при (или, что то же, при ), то при получатся формулы (22), т. е. «нетерпеливые» заявки станут «терпеливыми».

До сих пор мы рассматривали системы, в которых входящий поток никак не связан с выходящим. Такие системы называются разомкнутыми. В некоторых же случаях обслуженные требования после задержки опять поступают на вход. Такие СМО называются замкнутыми. Поликлиника, обслуживающая данную территорию, бригада рабочих, закрепленная за группой станков, являются примерами замкнутых систем.

В замкнутой СМО циркулирует одно и то же конечное число потенциальных требований. Пока потенциальное требование не реализовалось в качестве требования на обслуживание, считается, что оно находится в блоке задержки. В момент реализации оно поступает в саму систему. Например, рабочие обслуживают группу станков. Каждый станок является потенциальным требованием, превращаясь в реальное в момент своей поломки. Пока станок работает, он находится в блоке задержки, а с момента поломки до момента окончания ремонта - в самой системе. Каждый рабочий является каналом обслуживания.

Пусть n - число каналов обслуживания, s - число потенциальных заявок, n <s , - интенсивность потока заявок каждого потенциального требования, μ - интенсивность обслуживания:

Вероятность простоя системы определяется формулой

Р 0 = .

Финальные вероятности состояний системы:

P k = при k = при .

Через эти вероятности выражается среднее число занятых каналов

=P 1 + 2P 2 +…+n(P n +P n+ 1 +…+P s) или

=P 1 + 2P 2 +…+(n- 1)P n- 1 +n( 1-P 0 -P 1 -…-P n-1 ).

Через находим абсолютную пропускную способность системы:

а также среднее число заявок в системе

М =s- =s- .

Пример 1 . На вход трехканальной СМО с отказами поступает поток заявок с интенсивностью =4 заявки в минуту, время обслуживания заявки одним каналом t обсл =1/μ =0,5 мин. Выгодно ли с точки зрения пропускной способности СМО заставить все три канала обслуживать заявки сразу, причем среднее время обслуживания уменьшается втрое? Как это скажется на среднем времени пребывания заявки в СМО?

Решение. Находим вероятность простоя трехканальной СМО по формуле

ρ = /μ =4/2=2, n=3,

Р 0 = = = 0,158.

Вероятность отказа определяем по формуле:

Р отк =Р n ==

P отк = 0,21.

Относительная пропускная способность системы:

Р обсл = 1-Р отк 1-0,21=0,79.

Абсолютная пропускная способность системы:

А= Р обсл 3,16.

Среднее число занятых каналов определяем по формуле:

1,58, доля каналов, занятых обслуживанием,

q = 0,53.

Cреднее время пребывания заявки в СМО находим как вероятность того, что заявка принимается к обслуживанию, умноженную на среднее время обслуживания: t СМО 0,395 мин.

Объединяя все три канала в один, получаем одноканальную систему с параметрами μ= 6, ρ= 2/3. Для одноканальной системы вероятность простоя:

Р 0 = = =0,6,

вероятность отказа:

Р отк =ρ Р 0 = = 0,4,

относительная пропускная способность:

Р обсл = 1-Р отк =0,6,

абсолютная пропускная способность:

А= Р обсл =2,4.

t СМО =Р обсл = =0,1 мин.

В результате объединения каналов в один пропускная способность системы снизилась, так как увеличилась вероятность отказа. Среднее время пребывания заявки в системе уменьшилось.

Пример 2 . На вход трехканальной СМО с неограниченной очередью поступает поток заявок с интенсивностью =4 заявки в час, среднее время обслуживания одной заявки t =1/μ=0,5 ч. Найти показатели эффективности работы системы.

Для рассматриваемой системы n =3, =4, μ=1/0,5=2, ρ= /μ=2, ρ/n =2/3<1. Определяем вероятность простоя по формуле:

Р=.

P 0 = =1/9.

Среднее число заявок в очереди находим по формуле:

L =.

L = = .

Среднее время ожидания заявки в очереди считаем по формуле:

t = = 0,22 ч.

Среднее время пребывания заявки в системе:

Т=t+ 0,22+0,5=0,72.

Пример 3 . В парикмахерской работают 3 мастера, а в зале ожидания расположены 3 стула. Поток клиентов имеет интенсивность =12 клиентов в час. Среднее время обслуживания t обсл =20 мин. Определить относительную и абсолютную пропускную способность системы, среднее число занятых кресел, среднюю длину очереди, среднее время, которое клиент проводит в парикмахерской.

Для данной задачи n =3, m =3, =12, μ =3, ρ =4, ρ/n =4/3. Вероятность простоя определяем по формуле:

Р 0 =.

P 0 = 0,012.

Вероятность отказа в обслуживании определяем по формуле

Р отк =Р n+m = .

P отк =P n + m 0,307.

Относительная пропускная способность системы, т.е. вероятность обслуживания:

P обсл =1-P отк 1-0,307=0,693.

Абсолютная пропускная способность:

А= Р обсл 12 .

Среднее число занятых каналов:

.

Средняя длина очереди определяется по формуле:

L =

L= 1,56.

Среднее время ожидания обслуживания в очереди:

t = ч.

Среднее число заявок в СМО:

M=L + .

Среднее время пребывания заявки в СМО:

Т=М/ 0,36 ч.

Пример 4 . Рабочий обслуживает 4 станка. Каждый станок отказывает с интенсивностью =0,5 отказа в час, среднее время ремонта t рем =1/μ=0,8 ч. Определить пропускную способность системы.

Эта задача рассматривает замкнутую СМО, μ =1,25, ρ=0,5/1,25=0,4. Вероятность простоя рабочего определяем по формуле:

Р 0 =.

P 0 = .

Вероятность занятости рабочего Р зан = 1-Р 0 . А=( 1-P 0 =0,85μ станков в час.

Задача:

Два рабочих обслуживают группу из четырех станков. Остановки работающего станка происходят в среднем через 30 мин. Среднее время наладки составляет 15 мин. Время работы и время наладки распределено по экспоненциальному закону.

Найдите среднюю долю свободного времени для каждого рабочего и среднее время работы станка.

Найдите те же характеристики для системы, в которой:

а) за каждым рабочим закреплены два станка;

б) два рабочих всегда обслуживают станок вместе, причем с двойной интенсивностью;

в) единственный неисправный станок обслуживают оба рабочих сразу (с двойной интенсивностью), а при появлении еще хотя бы одного неисправного станка они начинают работать порознь, причем каждый обслуживает один станок (вначале опишите систему в терминах процессов гибели и рождения).

Решение:

Возможны следующие состояния системы S:

S 0 – все станки исправны;

S 1 – 1 станок ремонтируется, остальные исправны;

S 2 – 2 станок ремонтируется, остальные исправны;

S 3 – 3 станок ремонтируется, остальные исправны;

S 4 – 4 станок ремонтируется, остальные исправны;

S 5 – (1, 2) станки ремонтируются, остальные исправны;

S 6 – (1, 3) станки ремонтируются, остальные исправны;

S 7 – (1, 4) станки ремонтируются, остальные исправны;

S 8 – (2, 3) станки ремонтируются, остальные исправны;

S 9 – (2, 4) станки ремонтируются, остальные исправны;

S 10 – (3, 4) станки ремонтируются, остальные исправны;

S 11 – (1, 2, 3) станки ремонтируются, 4 станок исправен;

S 12 – (1, 2, 4) станки ремонтируются, 3 станок исправен;

S 13 – (1, 3, 4) станки ремонтируются, 2 станок исправен;

S 14 – (2, 3, 4) станки ремонтируются, 1 станок исправен;

S 15 – все станки ремонтируются.

Граф состояний системы…

Данная система S является примером замкнутой системы, так как каждый станок является потенциальным требованием, превращаясь в реальное в момент своей поломки. Пока станок работает, он находится в блоке задержки, а с момента поломки до момента окончания ремонта – в самой системе. Каждый рабочий является каналом обслуживания.

Если рабочий занят, он налаживает μ-станков в единицу времени, пропускная способность системы:

Ответ:

Средняя доля свободного времени для каждого рабочего ≈ 0,09.

Среднее время работы станка ≈ 3,64.

а) За каждым рабочим закреплены два станка.

Вероятность простоя рабочего определяется по формуле:

Вероятность занятости рабочего:

Если рабочий занят, он налаживает μ-станков в единицу времени, пропускная способность системы:

Ответ:

Средняя доля свободного времени для каждого рабочего ≈ 0,62.

Среднее время работы станка ≈ 1,52.

б) Два рабочих всегда обслуживают станок вместе, причем с двойной интенсивностью.

в) Единственный неисправный станок обслуживают оба рабочих сразу (с двойной интенсивностью), а при появлении еще хотя бы одного неисправного станка они начинают работать порознь, причем каждый обслуживает один станок (вначале опишите систему в терминах процессов гибели и рождения).

Сравнение 5 ответов:

Наиболее эффективным способом организации рабочих за станками будет являться начальный вариант задачи.

Выше были рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Возможность применения теории принятия решений в системах массового обслуживания определяется следующими факторами:

1. Количество заявок в системе (которая рассматривается как СМО) должно быть достаточно велико (массово).

2. Все заявки, поступающие на вход СМО, должны быть однотипными.

3. Для расчетов по формулам необходимо знать законы, определяющие поступление заявок и интенсивность их обработки. Более того, потоки заявок должны быть Пуассоновскими.

4. Структура СМО, т.е. набор поступающих требований и последовательность обработки заявки, должна быть жестко зафиксирована.

5. Необходимо исключить из системы субъектов или описывать их как требования с постоянной интенсивностью обработки.

К перечисленным выше ограничениям можно добавить еще одно, оказывающее сильное влияние на размерность и сложность математической модели.

6. Количество используемых приоритетов должно быть минимальным. Приоритеты заявок должны быть постоянными, т.е. они не могут меняться в процессе обработки внутри СМО.

В ходе выполнения работы была достигнута основная цель – изучен основной материал «СМО с ограниченным временем ожидания» и «Замкнутые СМО», которая была поставлена преподавателем учебной дисциплины. Также мы ознакомились применением полученных знаний на практике, т.е. закрепили пройденный материал.


1) http://www.5ballov.ru.

2) http://www.studentport.ru.

3) http://vse5ki.ru.

4) http://revolution..

5) Фомин Г.П. Математические методы и модели в коммерческой деятельности. М: Финансы и статистика, 2001.

6) Гмурман В.Е. Теория вероятностей и математическая статистика. М: Высшая школа, 2001.

7) Советов Б.А., Яковлев С.А. Моделирование систем. М: Высшая школа, 1985.

8) Лифшиц А.Л. Статистическое моделирование СМО. М., 1978.

9) Вентцель Е.С. Исследование операций. М: Наука, 1980.

10) Вентцель Е.С., Овчаров Л.А. Теория вероятностей и её инженерные приложения. М: Наука, 1988.

Цель лекции: освоение понятий поток событий, простейший поток событий, Марковский процесс.

1.Поток событий. Свойства потоков событий. Простейший поток событий. Формула Пуассона.

2. Процесс обслуживания как Марковский процесс.

3. Одноканальная СМО с ожиданием.

Потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Примерами могут быть:

Поток вызовов на телефонной станции;

Поток сбоев компьютера;

Поток выстрелов, направляемых на цель, и т.д.

Регулярным потоком называется поток, в котором события следуют одно за другим через одинаковые промежутки времени (детерминированная последовательность событий).

Такой поток событий редко встречается на практике. В телекоммуникационных системах чаще встречаются потоки, для которых и моменты наступления событий и промежутки времени между ними являются случайными.

Рассмотрим такие свойства потоков событий, как стационарность, ординарность и отсутствие последействия.

Поток стационарен, если вероятность появления какого-то числа событий на интервале времени τ зависит только от длины этого интервала и не зависит от его расположения на оси времени. Для стационарного потока среднее число событий в единицу времени постоянно.

Ординарным потоком называется поток, для которого вероятность попадания на данный малый отрезок времени двух и более требований пренебрежительно мала по сравнению с вероятностью попадания одного требования.

В системах телекоммуникаций поток принято считать ординарным.

Потокбез последствия характеризуется тем, что для двух непересекающихся интервалов времени

вероятность появления числа событий на втором интервале не зависит от числа появления событий на первом интервале.

Параметром потока называется предел

где - вероятность того, что на интервале появятся заявки.

Интенсивностью потока μ называется среднее число событий в единицу времени.

Для стационарного потока его параметр не зависит от времени .

Для стационарного и ординарного потока λ=μ.

Простейшим или пуассоновским потоком называется стационарный, ординарный поток без последействия.

Простейший поток подчиняется пуассоновскому закону распределения

где - интенсивность потока;

Количество событий, появляющихся за время .

Простейший поток можно задать функцией распределения промежутка между соседними вызовами

F(t)=P(zt),

P(z>t) равносильна вероятности того, что в промежутке длиной t не поступит не одного вызова.



F(t)=P(z>t)=1- (t)=1-

Данный закон распределения случайной величины называется показательным.

Свойства и характеристики простейшего потока:

а) для простейшего потока математическое ожидание и среднеквадратическое отклонение величины промежутка z равны между собой MZ= σz=1/λ;

б) Математическое ожидание и дисперсия числа вызовов i за промежуток времени t равны между собой Mi=Di= λt.

Совпадение этих величин используют на практике при проверке реального потока для соответствия его простейшему.

СМО – система, подразумевающая наличие в ней 2х процессов: поступления заявок и обслуживания заявок.

Условно схема представляется в виде

И Накопитель К

Обслуживающий прибор

Процесс поступления заявок – процесс по времени.

Поток событий – последовательность моментов времени наступления каких-либо событий.

С любой СМО связаны 3 потока:

1) входной поток. Последовательность моментов времени поступления заявок

2) выходной поток. Последовательность моментов времени ухода обслужившихся заявок.

3) поток обслуживаний. Последовательность моментов времени окончания ослуживания заявок в предположении что обслуживание осуществляется непрерывно.

Поток характеризуется интенсивностью – среднее число событий в единицу времени.

Поток наз-ся регулярным , если интервалы времени между событиями в нём одинаковы. Нерегулярный – если интервалы времени м\ду событиями – случайные величины.

Поток рекуррентный , если интервалы времени между событиями – случайные величины, распределённые по одному и томуже закону.

Поток наз-ся однородным , если он х-ся только множеством {ti} наступивших событий. Неоднородный – если он описывается множеством {ti,fi}, где ti – моменты времени наступления событий, fi – признак заявки.

Сами СМО подразделяются на СМО с отказами и СМО с очередями . СМО с очередями подразделяется на с ограниченной очередью и с неограниченной очередью. Частный случай – ограниченное время ожидания в очереди.

В системах последнего типа заявки, которые не могут быть обслужены сразу, составляют очередь и с помощью некоторой дисциплины обслуживания выбираются из нее. Некоторые наиболее употребляемые дисциплины:

1) FIFO (first in – first out) – в порядке поступления;

2) LIFO (last in – first out) – первой обслуживается поступившая последней;

3) SIRO (service in random order) – в случайном порядке;

4) – приоритетные системы. (абсолютный и относительный приоритеты. При относительном заявки выстраиваются по значению приоритета – вначале высокие, потом ниже.)

Для краткой характеристики СМО Д.Кендалл ввел символику (нотацию)

m - число обслуживающих каналов;

n – количество мест ожидания (емкость накопителя).

k – кол-во источников.

A и B характеризуют соответственно входной поток и поток обслуживания, задавая функцию распределения интервалов между заявками во входном потоке и функцию распределения времен обслуживания.

А и В могут принимать значения:

D – детерминированное распределение;

М – показательное;

Е r – распределение Эрланга;

H r - гиперпоказательное;

G – распределение общего вида.

При этом подразумевается, что потоки являются рекуррентными , т.е. интервалы между событиями независимы и имеют одинаковое распределение. Обязательными в нотации являются первых 3 позиции. По умолчанию если n отсутствует имеем систему с отказами, если отсутствует k, то по умолчанию – один источник.

9. Простейший поток, его свойства и значение при исследовании смо.

Поток, удовлетворяющий следующим трем требованиям, называются простейшим.

1)Поток стационарен , если вероятность поступления заданного числа событий в течение интервала времени фиксированной длины зависит только от продолжительности интервала и не зависит от его расположения на временной оси.

2)Поток ординарный , если вероятность появления двух или более событий в течение элементарного интервала времени
→0 есть величина бесконечно малая по сравнению с вероятностью появления одного события на этом интервале.

3)Поток называется потоком без последействия , если для любых неперекрывающихся интервалов времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Иногда это свойство формулируют следующим образом: распределение времени до ближайшего события не зависит от времени наблюдения, т.е. от того, сколько времени прошло после последнего события.

Поток, удовлетворяющий этим трем условиям, называется простейшим.

Для него число событий, попадающих на любой фиксированный интервал времени подчиняется закону Пуассона, поэтому его иначе называют стационарным пуассоновским.

вероятность того, что за интервал времени τ произойдет ровно m событий.

Условие отсутствие последствия (заявки поступают независимо друг от друга) наиболее существенно для простейшего потока.

пуассоновского распределения.

Вероятность того, что за не произойдет не одного события

Вероятность, что за времяпроизойдет хотя бы одно событие

Иногда удобней анализировать систему, рассматривая интервалы между событиями T:

Это показательный закон с интенсивностью .

Математическое ожидание и среднее квадратичное для T:

Свойство отсутствие последействия позволяет использовать для исследования простейшего потока аппарат Марковских цепей.

Введем состояния системы следующим образом – считаем систему, находящейся в состоянии S, если в момент времени t в системе находится S заявок.

Определим вероятность для системы, состояние которой определяется только поступление заявок, того что в момент
система останется в том же состоянии. Очевидно, эта вероятность определяется тем, что за интервал
не поступит ни одной заявки


(S=0, 1, 2…)

Разлагая в ряд, получим:

Вероятность получения хотя бы одной заявки

Аналогичные соотношения можно получить, рассматривая процесс обслуживания заявок.

Простейшие или близкие к ним потоки часто встречаются на практике.

При суммировании достаточно большого кол-ва потоков с последействием, получается поток с последействием. В простейшем потоке приблизительно 68% маленьких интервалов

При вероятностном просеивании простейшего потока получается простейший поток

10. Непрерывно-стохастические модели (Q -схемы). Одноканальная СМО с блокировкой. Построение графа состояний .

При построении моделей такого рода как правило, используются рассмотрения моделируемых объектов, как Систем Массового Обслуживания (СМО).

Таким образом могут быть представлены различные по своей физической природе процессы – экономические, технические, производственные и т.д.

В СМО можно выделить два стохастических процесса:

Поступление заявок на обслуживание;

Обслуживание заявок.

Поток событий – последовательность событий, происходящих одно за другим в некоторые моменты времени. В СМО будем выделять два потока:

Входной поток: множество моментов времени поступления в систему заявок;

Поток обслуживания: множество моментов окончания обработки системой заявок.

В общем случае СМО элементарного вида может быть представлено следующим образом

Обслуживающий прибор

И – источник;

О – очередь;

К – канал обслуживания.

Одноканальная СМО с блокировкой . Система M / M / 1/ n

Рассмотрим двухфазную систему, для которой при исследовании P – схем полагали детерминированный входной и просеянный поток обслуживания.

Считаем, что теперь входной поток пуассоновский с интенсивностью, а поток обслуживания – пуассоновский с интенсивностью.

Как и прежде, дисциплина обслуживания FIFO с блокировкой источника.

Состояние – число заявок в системе.

Всего возможно n +3 состояния: от 0 до n +2 .

Обозначим
- вероятность прихода за
i заявок;

- вероятность обслуживания за
i заявок.

ввиду ординарное

Аналогично

+
=

1-
+

Система уравнений:
и
- вероятности состояний.

при
получим

Ввиду стационарности потоков имеем:

и
,

Аналогично для остальных строк системы.

Окончательно имеем:

Получена система алгебраических уравнений.

Преобразуем её, начиная со второго и заканчивая предпоследним - новое уравнение получаем сложением старого с новым предыдущим.

В результате новое предпоследнее будет совпадать со старым последним уравнением:

i=0, 1,….n+1

Обозначим

,

Используем уравнеие нормировки

;

;

Это сумма геометрической прогрессии:

Cреднее время обсл. заявки