Добыча нефти и газа методом фрекинга. Что такое гидроразрыв пласта по-Техасски

Какой благовоспитанный и солидный человек, с такой милой, постоянной, доброй улыбкой на лице. Знаете кто это?
Это ни кто иной как Джорж Митчел, руководитель собственной компании Mitchell Energy & Development Corp, ради обогащения, ради той самой прибыли, он сделал все возможное и невозможное, но добился, чтобы добычу сланцевой нефти сочли рентабельной и сильные мира сего вложили свои миллиарды в разработку.
Перед вами убийца всего живого на миллионах акров земли, во множестве стран мира. Это после его успеха, из водопроводных труб незадачливых лузеров не вписавшихся в рынок, то есть местных жителей, которым не повезло жить в окрестностях тех мест, где он и его последователи начали добычу сланцевой нефти, потекла вода вспыхивающая от поднесенной спички. Это после того, как он ударил по рукам со своими спонсорами, миллионы тонн химикатов по всему миру загрязнили подземные воды, землю, убили все живое вокруг, привели к рождению калек, болезням и смертям людей. Хотя если быть точным, то он лишь один из многих... Разве есть преступление на которое не пойдет капитал при достаточном проценте прибыли?

«Обеспечьте капиталу 10% прибыли, и капитал согласен на всякое применение, при 20% он становится оживленным, при 50% положительно готов сломать себе голову, при 100% он попирает все человеческие законы, при 300% нет такого преступления, на которое он не рискнул бы пойти, хотя бы под страхом виселицы».

Так о чем же идет речь?

Сланцевая нефть - полезное ископаемое из группы твёрдых каустобиолитов, дающее при сухой перегонке значительное количество смолы близкой по составу к нефти. (Каустобиолиты - горючие полезные ископаемые органического происхождения, представляющие собой продукты преобразования остатков растительных, реже животных, организмов под воздействием геологических факторов. По крайней мере так считается общепризнанным.
Есть альтернативная минеральная теория, о которой мы почти не слышим. Ее основателем считают Менделеева. Сторонники этой теории считают нефть продуктом химических реакций, происходящих на большой глубине и не связанных с органическими останками. И скорость этих процессов сотни, а то и десятки лет. То есть нефть способна восстанавливаться в прежнем и больших объемах спустя определенный промежуток времени внутри опустевшего месторождения!)

Сжигать нефть?! Точно также можно ведь топить (печь) ассигнациями .
Д. Менделеев.
(Ассигнация - это историческое название бумажных денег, выпускавшихся в Российской Федерации в период с 1769 до 1849.)

Из одной тонны обогащенного черным золотом сланца при помощи новейших технологий можно добыть только 0,5 - 1,25 барреля. (1 Нефтяной баррель = 158,987 литра.)

Опять же все привыкли говорить о сланцевой нефти, но почему то забывают о сланцевом газе, а там подобные же схемы добычи...

(Сланцевый газ ставший рентабельным в 2000-е годы привел к переделу мировой газовый рынок. Благодаря широкому внедрению технологии фрекинга- гидроразрыва пластов, американцы научились добывать газ из сланцевых пород, существенно снизив издержки. Дешевый газ хлынул на рынок США и завоевал его в течение какой-то пары лет. Америка стала добывать больше, а импортировать, соответственно, меньше, что оказало сильнейшее давление на цены по всему миру.)

Какая разница в добыче обычной нефти и сланцевой? Ведь обычная добыча тоже загрязняет природу и разрушает экологию планеты.

При классическом способе добычи нефти используется поэтапный метод: Первичный. Жидкость поступает под воздействием высокого давления в пласте, которое образуется от подземных вод, расширения газов и прочее. При таком способе коэффициент извлечения нефти составляет примерно 5-15%.

Вторичный. Такой метод используется тогда, когда естественного давления уже недостаточно, чтобы поднимать нефть по скважине и он заключается в использовании закачиваемой воды, попутного или натурального газа. В зависимости от пород резервуара и характеристик нефти, коэффициент извлечения нефти при вторичном методе достигает 30%, а суммарное значение - 35-45%.

Третичный. Такой метод заключается в увеличении подвижности нефти для повышения ее отдачи. Один из способов - это TEOR, при помощи которого за счет нагрева жидкости в пласте уменьшается вязкость. Для этого наиболее часто применяется водяной пар. Реже используется частичное сжигание нефти на месте, непосредственно в самом пласте. Однако такой способ не очень эффективен. Для изменения поверхностного натяжения между нефтью и водой можно ввести специальные поверхностно активные вещества или детергенты. Третичный метод позволяет повысить коэффициент извлечения нефти еще примерно на 5-15%. Данный способ используется лишь в том случае, если добыча нефти продолжает оставаться рентабельной. Поэтому применение третичного метода зависит от цен на нефть и стоимости ее извлечения.

Но человек на фото добился, так называемой, революционной добычи нефти из сланцев.

Существует два основных способа получения необходимого сырья из горючих сланцев. Первый - это добыча сланцевой породы открытым или шахтным способом с ее последующей переработкой на специальных установках-реакторах, где сланцы подвергают пиролизу без доступа воздуха, в результате чего из породы выделяется сланцевая смола. Этот метод активно развивался в СССР. Хорошо известны также проекты по добыче сланцев в провинции Фушунь (Китай), на месторождении Ирати (Бразилия).

А второй это гидравлический разрыв пласта —процесс, который предполагает введение смеси воды, песка и химических веществ в газоносные породы под чрезвычайно высоким давлением (500-1500 атм). Давление приводит к образованию крошечных трещин, которые позволяют газу вырваться. Вся эта система трещин связывает скважину с удаленными от забоя продуктивными частями пласта. Для предотвращения смыкания трещин после снижения давления в них вводят крупнозернистый песок, добавляемый в жидкость, нагнетаемую в скважину. Радиус трещин может достигать нескольких десятков и даже сотен метров. Процесс разрыва в большой степени зависит от физических свойств жидкости и, в частности от ее вязкости. Чтобы давление разрыва было наименьшим, нужно, чтобы она была фильтрующейся.
Повышение вязкости так же, как и уменьшение фильтруемости жидкостей, применяемых при разрыве пластов, осуществляется введением в них соответствующих добавок. Такими загустителями для углеводородных жидкостей, применяемых при разрыве пластов, являются соли органических кислот, восокомолекулярные и коллоидные соединения нефти (например, нефтяной гудрон и другие отходы нефтепереработки). Значительной вязкостью и высокой песконесущей способностью обладают некоторые нефти, керосино-кислотные и нефте-кислотные эмульсии, применяемые при разрыве карбонатных коллекторов, и водо-нефтянные эмульсии.
Эти жидкости и используются в качестве жидкостей разрыва и жидкостей-песконосителей при разрыве пластов в нефтяных скважинах. Применение жидкостей разрыва и жидкостей-песконосителей на углеводородной основе для разрыва пластов в водонагнетательных скважинах может привести к ухудшению проницаемости пород для воды вследствие образования смесей воды с углеводородами. Во избежание этого явления пласты в водонагнетательных скважинах разрывают загущенной водой. Для загущения применяют сульфид-спиртовую борду и другие производные целлюлозы, хорошо растворимые в воде.
Как правило жидкости используемые в этом методе канцерогенные... Особо опасно попадание в грунтовые воды всех этих химических реагентов, используемых при гидравлическом разрыве в частности в пласты содержащие артезианскую воду, используемую для питья. Операцию гидроразрыва пластов на одной территории приходится повторять до 10 раз в год. При гидроразрыве химическая смесь пропитывает породу, что ведёт к загрязнению значительной территории...

В англоязычных СМИ репортеры наперебой обсуждают химический состав раствора для проведения гидроразрывов, используемый компаниями, добывающими сланцевый газ. В целом, объем воды, необходимой для проведения гидроразрыва - например, в формации Марселлус, составляет порядка 16 тыс. тонн. При этом сами компании всегда сообщали, что от 98 до 99% раствора - это просто вода и песок. Вопросы вызывали оставшиеся 1-2%. Эти оставшиеся проценты, которые вполне могут попасть в питьевую воду по трещинам, образовавшимся в породе после гидроразрыва, весьма волнуют американскую общественность. В абсолютном исчислении количество химикатов весьма велико: если общая масса воды и песка - около 16 тыс. тонн, которые доставляют несколько сотен автоцистерн, то доля химических добавок может составлять до 320 тонн.

По информации, предоставленной компанией Halliburton, которая впервые провела гидроразрыв в 1947 г, выступив пионером в этой области, 98,47% объема жидкости, которая используется для гидроразрыва - это смесь воды и песка, а 1,53% - химические добавки - формальдегид, хлорид аммония, уксусный ангидрид, метиловый и пропиловый спирты, а также соляная кислота.

После того, как смесь для гидроразрыва готова, ее закачивают под землю с усилием до 70 МПа. Давление воды вызывает появление трещин, а песчинки, которые загоняет в эти трещины поток жидкости, мешает их последующему схлопыванию. К слову, под словом "песчинки" подразумевается не только обычный песок, но и песок с полимерным покрытием (resin-coated sand) и частицы спеченного боксита.

Проведение одного гидроразрыва занимает от 3 до 10 дней. При этом компания Chesapeake Energy использует совершенно иные химикаты, чем Halliburton, и доля их в готовом растворе намного ниже, порядка 0,5% добавок. О чем они с гордостью заявляют...

К слову, задачу специалистов, работающих в американских департаментах защиты окружающей среды, действующих в каждом штате, осложняет то, что разные компании используют различные наборы химикатов, их свыше 85...

Необходимо сказать несколько слов о понятии сланцевая нефть . В Америке, где сланцевая нефть стала играть существенную роль в повышении нефтедобычи, под этим термином часто понимают нефть двух видов. Сланцевой называют нефть, получаемую из горючих сланцев, которая по своим свойствам (плотности, вязкости) значительно отличается от традиционной легкой нефти. Одновременно с этим часто тем же самым термином обозначают нефть по свойствам аналогичную обычной легкой нефти, но содержащуюся в плотных низкопористых низкопроницаемых коллекторах (сланцах). Чтобы разделить эти два вида нефти (оба из которых добываются из сланцев) специалисты пользуются двумя терминами: shale oil - для высоковязкой сланцевой смолы из горючих сланцев, требующей дополнительной обработки для превращения ее в нефть и tight oil - для легкой нефти, содержащейся в коллекторах с низкими фильтрационно-емкостными свойствами.

В России:

Россия пустила на свои месторождения американцев, которые добывают сланцевую нефть на сибирских месторождениях. Наиболее активно экологически опасные методы гидроразрыва пласта используют на Баженовском месторождении, где давно работают западные нефтесервисные компании. Щадящая советская технология термонагрева сланцев пока не доработана и может оказаться вообще невостребованной. "Роснефть", "Лукойл" и "Газпром нефть" имеют свои участки на Баженовском месторождении, трудноизвлекаемую нефть они добывают с помощью бурения горизонтальных скважин и гидроразрыва пласта. Неслучайно в 2012 году российские нефтяные боссы посетили конференцию по добыче сланцевых углеводородов в США, где рассказали о своем опыте работы в этом направлении. Роснефть опробовала горизонтальное бурение с гидроразрывом пластов в 2011 году на Приобском месторождении. Позже этот метод использовался на 50 скважинах, в то время как в 2012 году их было три. Самым активным пользователем технологии на сегодняшний день является "Лукойл", компания к началу 2013 года пробурила 215 горизонтальных скважин и добыла таким образом 19 миллионов баррелей нефти. В планах у компании было довести количество таких скважин до 450 скважин. Есть опыт такого бурения и у купленной "Роснефтью" ТНК-ВР, число скважин которой превысило сотню. Добывать нефть из сложного месторождения российские компании решили в тесном сотрудничестве с западными нефтедобывающими корпорациями и нефтесервисными компаниями. Так "Газпром нефть" обещал в 2012 что приступит к освоению Баженовской свиты совместно с Royal Dutch Shell Plc в течение трех лет. Роснефть на свои участки запустит Exxon Mobil Corp. В стране уже активно работают три крупнейшие нефтесервисные компании мира:
- Schlumberger Ltd. (SL
- Weatherford International Ltd. (WFT);
- C. A.T. Oil AG, которые по всей вероятности и будут выступать подрядчиками.
Чтобы сохранить собственную маржу и дать заработать американцам, нефтяники пролоббировали пониженный налог на сланцевую нефть. Значит, в бюджет от этой нефти будет поступать намного меньше денег. Кроме того, они получили обещание снизить экспортные пошлины в случае заметного падения цен на нефть, которого, к слову, эксперты не ожидали в то время... Административный компонент черного золота будет регулироваться с учетом более высокой себестоимости сланцевой добычи.
В настоящее время известно более 70 месторождений с открытыми запасами нефти в пластах сланцев в северной части России. Баженовская свита распространена в Западно-Сибирской НГП на территории более 1 млн км3. Отложения бажена выделены в пределах ХМАО-Югра, Тазовского п-ова, п-ова Гыдан, восточной и центральной части п-ова Ямал. Отложения баженовской свиты залегают на глубине от 600 м у границ распространения до максимальных глубин 3500-3800 м.

В США:

В США основные запасы сланцевой нефти располагаются на юге Техаса (Игл Форд),

в районе Скалистых гор (Найобрара формейшн, Баккен Шейл), на западном побережье (Монтерей формейшн) , а так же на северо-востоке США (Ютика Шейл) и в восточной части Канады (Кардиум формейшн)
В результате сланцевой революции в США количество добывающих скважин с двух сотен в 2000-2005 годах быстро выросло почти до 5000 скважин к концу 2012 года. И если в 2008 году добыча сланцевой нефти на месторождении Bakken составляла лишь около 1% от общего объема добычи в США, то к концу 2012 года на месторождении добывается без малого 700 тыс. барр/день, что составляет около 10% всей нефтедобычи в США. А всего в стране добывается уже более полутора миллионов барр/день сланцевой нефти и ею обеспечена значительная часть общего роста добычи нефти в США.

В Иордании:

Страна в недостаточной мере обеспечена пресной водой, которая при нынешних технологиях добычи нефти из сланца расходуется в значительных объемах. Учитывая тот факт, что страна снабжается пресной водой из двух рек - Ярмука и Иордана, которые приносят в год до 850 млрд. куб. м пресной воды (из которых более 28 млрд. куб. м уйдут на обеспечение добычи сланцевой нефти), уже в 2015 году при выполнении заявленных планов по разработке нефтяных сланцев в Иордании может образоваться 5% дефицит пресной воды, не учитывая рост населения и увеличения потребления воды в других секторах экономики. Тем не менее, потенциальная опасность не останавливает иорданское правительство, ожидаемые доходы от экспорта нефти видятся для страны привлекательнее возможного дефицита важнейшего ресурса.

В Израиле:

По оценкам Israel Energy Initiatives (IEI) ресурсы нефтяного сланца в долине составляют около 34 млрд. т, что соразмерно запасам нефти в Саудовской Аравии. Israel Energy Initiatives (IEI) - израильская компания, базирующаяся в Иерусалиме.
В Израиле планируют применить принципиально новые методы извлечения нефти из керогена, не похожие на используемые методы в других странах. На начальных этапах добыча будет вестись методами внутрипластовой добычи с использованием электрических и газовых нагревателей, а позже, согласно сообщениям IEI, будет разработана технология, направленная на радикальное снижение объемов воды, требуемых для добычи. Одной из основных целей проекта является именно разработка и апробация этой технологии уже к 2019-2020 гг. Такая технология позволит не только не тратить на добычу сланцев значительные объемы воды, как это происходит сейчас, но и каким-то образом получать воду вместе с нефтью на подобных месторождениях.

Стоит отметить, что этот проект во многом является проектом геополитической спекуляции. Руководители компании-оператора и ведущие инвесторы проекта - британец Якоб Ротшильд и американцы Руперт Мердок и Дик Чейни, открыто выражают свое мнение по поводу геополитической направленности проекта, позиционируя его во многом как проект, нацеленный против ресурсного национализма арабских нефтедобывающих стран. Джонас, ярый сионист, полагает, что запасы Шфела это только начало: "Мы считаем, что в Израиле больше нефти, чем в Саудовской Аравии. Там может быть до полутриллиона баррелей". Поскольку транснациональные нефтяные компании опасаются развивать месторождение Шфела, за развитие этого крупнейшего в мире месторождения взялась компания, которая ранее не занималась этим бизнесом, компания IDT

В Марокко:

К принципиальным изменениям на собственном рынке нефти готовится и еще одна страна-импортер. В Марокко еще во второй половине 2000-х гг. совместно с правительством США был запущен пилотный проект по добыче нефтяного сланца Тарфайа (Tarfaya Oil Shale Pilot Plant project) под управлением компании «Сан Леон Энерджи».
Ресурсы страны оцениваются в 7,3 млрд. т нефти, ресурсы Тарфайи - в 3,11 млрд. т.В 2010 году проект перешел в стадию обустройства месторождения и инфраструктуры. По оценкам компании-оператора, уже к 2013 году на месторождении будет производиться 3 млн. т нефти в год

Второй проект - Тимагди - оценивается в 2,05 млрд. т.н.э. Проект должен был стартовать еще в 2011 году, но по непонятным причинам был отложен до начала 2012 года. По оценкам компании уже в 2012 году на месторождении будет добыто 2,5 млн. т нефти.
Потребление Марокко на 2011 год составило 11,4 млн. т нефти, а производство, - всего лишь 9 тыс. т в год. За счет добычи нефти на этих проектах страна уже в ближайшие годы сможет сократить разрыв между производством и потреблением, даже несмотря на рост спроса в стране (по оценкам ИНЭИ РАН, к 2015 году спрос на нефть достигнет 11,8 млн. т). Стоит также отметить, что в Марокко имеется НПЗ, рассчитанный на переработку 10 млн.т нефти, в данный момент загруженный только наполовину импортным сырьем. Добыча 5 млн. т собственной нефти позволит африканской стране отказаться от импорта нефтепродуктов и высвободить для своих североафриканских соседей, в частности для Ливии, возможность дополнительно экспортировать 5 млн. т нефти в Европу.

В Китае:

Ресурсы нефтяного сланца Китая оцениваются более чем в 46 млрд. т н.э., в то время как технически извлекаемые из нефтяного сланца запасы сланцевой нефти (shale oil) составляют 550 млн. т. На конец 2011 года, по данным ВР statistical review of World Energy, доказанные запасы традиционной нефти в Китае составляли 2 млрд. т. Несмотря на значительные ресурсы, страна не спешит начать активную добычу нефти из сланцевых плеев. На данном этапе добыча из этих источников составляет 350 тыс. т в год, что соразмерно 0,2% от общего объема добычи в стране. На данный момент китайские компании активно инвестируют в разработку месторождений нефти низкопроницаемых пород в Северной Америке, обучаясь технологиям мультистадийного гидроразрыва пласта в совокупности с наклоннонаправленным бурением. На данном этапе сложно сказать, когда Китай начнет (и начнет ли вообще) применять эту технологию на собственных формациях.

Китай принимает участие в добыче нефти в США...
По некоторым прогнозам значительного роста добычи и нетрадиционной, и традиционной нефти в Китае не ожидается. К 2030 году общая добыча страны по прогнозам CERA составит 175-185 млн. т, а добыча сланцевой нефти - 3 млн. т, в то время как спрос к этому же моменту может возрасти до 665 млн. т. К 2030 году суммарная добыча нефти прогнозируется на уровне 176-190 млн. т, добыча нефти сланцевых плеев на уровне 4-15 млн. т. н.э., при спросе в 665,6 млн. т.

Согласно сообщению China"s National Energy Administration добыча нефти из нефтяного сланца в Китае может составить около 10 млн. т в год.
Почему же один из ведущих нефтеимпортеров мира не развивает собственную добычу нефти за счет запасов в нетрадиционных источниках?

Да потому, что там понимают далеко идущие последствия, нефть пить не будешь... В экологическом плане в Китае итак далеко не райская жизнь.

К тому же:
- китайские компании проводят политику активной инвестиционной экспансии на Ближнем Востоке, в Канаде, Африке и в Латинской Америке, обеспечивая собственную страну сырьем, добываемым за рубежом, а разработку собственной нефти откладывают «до лучших времен». Аналогичную политику в свое время проводили США, законсервировав значительное число собственных месторождений и осуществляя экспансию на зарубежные рынки силами компаний-мейджоров;
- отсутствие у Китая технологий, позволяющих добывать сланцевую нефть без серьезного ущерба для экологии и водоснабжения населения. Как уже было отмечено выше, современные технологии добычи сланцевой нефти предполагают значительные водозатраты, в то время как в Китае 65% пресной воды уходит на мелиорацию, а 60% значительно загрязнены и непригодны для питья. Во многих районах воды для использования в добыче просто нет. Добыча сланцевой нефти в больших объемах может привести Китай на грань настоящей экологической катастрофы . Однако, если вспомнить про разрабатываемую в Израиле «экологичную» технологию добычи сланцев с попутной добычей пресной воды, после масштабного внедрения этой технологии в мире ситуация для азиатского рынка может резко измениться; Основные запасы нефтяных сланцев сконцентрированы в провинциях Северо-Восточного Китая и в крупном промышленном центре Фушунь (восточная часть страны, менее 200 км до границы с Северной Кореей).

Национальные корпорации ведут добычу на нескольких пилотных месторождениях этих провинций, используя в основном внутрипластовые методы добычи с последующей переработкой углеводородной смеси в синтетическую нефть на заводах - апгрейдерах. По сообщению компании McKinsey & Company запасы нефти низкопроницаемых пород в Китае могут оказаться в 1,5 раза больше, чем в Северной Америке, что в перспективе может привести к значительному росту добычи этого вида нефти (точные цифры в сообщении не приводятся).

В Японии:

3 октября 2012 года в Японии добыли первую нефть. Компания распространила сообщение, что эксперимент будет осуществлен в районе города Ога в префектуре Акита. Ее запасы в самой Японии невелики. Но Japex рассчитывает таким путем освоить самые современные технологии добычи сланцевой нефти, чтобы затем применить их в других странах. Эта компания, 34% акций которой принадлежит государству, обладает правами на разработку месторождений в Индонезии, Ираке и Канаде.
3 октября 2012 года в Японии добыли первую нефть. Разработка первого в Японии месторождения горючего сланца велась Japex долгое время. Объем запасов месторождения в Аките равен примерно 5 млн баррелей, что, в принципе, немного. Однако для Японии это составляет около 10 % годовой потребности.
Тестовое бурение проводилось на месторождении «Аюкава», в городе Юрихонджо в префектуре Акита, в северо-западной части острова Хонсю. Залежи сланцевой нефти были обнаружены на глубине 1,8 тысячи метров. Чтобы добраться до нефтеносного слоя компания вливала в горную породу кислоты, размягчающие камень. Это было необходимо для последующего бурения...

В Австралии:

По данным МЭА, технически извлекаемые запасы нефти из сланцев (shale oil) в Австралии составляют 1,64 млрд. т нефти. На данный момент в стране действуют три проекта по добыче нефти из сланцевых плеев. Проект расположен на месторождении Стюарт, неподалеку от города Гледстоун. Стоит отметить, что это месторождение действует с 1970-х годов. Актив неоднократно перепродавался различным инвесторам и закрывался по требованию Greenpeace в связи с неблагоприятной экологической обстановкой.

«Вторую жизнь» проект получил в 2008 году, после того как у канадских компаний была закуплена и внедрена технология добычи сланцевой нефти, однако в том же году он попал под действие двадцатилетнего экологического моратория, запрещавшего добывать нефть из сланцевых плеев штата Queensland. С 2008 по 2011 год проект бездействовал, добыча не велась. Только после вмешательства Федерального Правительства Австралии местные власти разрешили продолжить проект и в начале 2011 года отменили мораторий на разработку сланцевых месторождений.

Правительство кладет деньги себе в карман и заявляет, что сможет сделать Австралию полностью энергетически независимой.

Вообщем сланцевой нефти в мире очень много. Огромные запасы, кроме выше перечисленных разведаны в Тасмании, ЮАР, Аргентине, Украине, Эстонии, Бразилии и других странах.

Основные проблемы для экологии и жителей:

Добыча нефти сланцевых плеев при современном уровне технологий связана с огромным уровнем расхода воды, так для добычи 1 барреля нефти требуется от 2 до 7 бар воды (от 317,8 до 1112,3 л).

Загрязнение воды происходит несколько раз, во первых используется чистая вода из окрестных водоемов или привозная, которую смешивают с химикатами, во вторых из скважины нефть поступает вместе с водой которой там до 70% . Эта вода также загрязняется не только нефтью, но и водой смешанной с химикатами, что привезли, ну и на закуску наша адская смесь по трещинам поступает в артезианскую воду или даже выше, в грунтовые воды, убивая либо отравляя все живое...

Важным аспектом экологического влияния нефти сланцевых плеев является высокая энергоемкость процесса их извлечения. По оценкам компании RAND Corporation от 2005 года, добыча 100 тыс. барр./сут требует строительства электростанции мощностью в 1200 МВт, которой было бы достаточно, что бы снабдить энергией свыше 300 тыс. домохозяйств в США.

Немаловажным фактором являются и значительные выбросы парниковых газов при разработке сланцевых месторождений. Энергетический институт Колорадо в тесном сотрудничестве с правительством США представил результаты расчетов, согласно которым инфраструктура добычных проектов, рассчитанных на добычу 90 млн т в год, будет производить одновременно более 350 млн т углекислого газа в год. Это составляет около 5 % от текущих годовых выбросов парниковых газов США (7,26 Гт CO2).

После гидроудара метан и химические реактивы попадают в водяные пласты, а затем в водопровод. В процессе добычи используется большое количество воды, которая потом не очищается. Выбросы метана в атмосферу влияют на усиление «парникового» эффекта.

Ну и главное: запасы чистой пресной воды снижаются во всем мире стремительными темпами. Чистая пресная вода - вот главный ресурс, и без нее человечеству будет крайне тяжело выжить.

В Великобритании добыча сланца привела к серии землетрясений в районе одного из курортных городков. По экологическим соображениям приостановлена добыча в трех американских штатах и двух канадских провинций.

Но дальше всех пошла Франция. В июле 2011 французское правительство приняло решение о запрете на разработки сланцевых месторождений газа и нефти методом ГРП и аннулировало все ранее выданные лицензии. Прогнозируется разработка аналогичной директивы уже на уровне ЕС.

by John Manfreda
13 April, 2015
http://oilprice.com/Energy/Crude-Oil/The-Real-History-Of-Fracking.html

За последнее десятилетие большую часть истории энергетического сектора США связывают с гидро-разрывом пласта (ГРП), также известным как «фрекинг». Эта технология при бурении позволила нефтяным и газовым производителям добывать нефть и природный газ из сланцевых пород, тем самым увеличив добычу нефти и газа внутри США.

Ученые мужы от СМИ утверждают, что такая добыча нефти и газа это - технологический прорыв, который позволил нам стать крупнейшим производителем нефти и газа в мире и позволит нам стать энергетически независимыми к 2020 г.

Существует много мифов вокруг этой технологии (отравляет питьевую воду, вызывает рак), но самый большой миф, что это новая технология.

Гражданская война и начало «фрекинга».

История «фрекинга» можно начать с 1862 г. Это время битвы при Фредериксбурге, когда ветеран гражданской войны полковник Эдвард Л. Робертс увидел, что может произойти при артиллерийской стрельбе в узком канале. Это было описано как супертампонаж жидкостью.

26 апреля 1865 г. Эдвард Робертс получила свой первый патент за использование взрывающтхся торпед в артезианских скважинах. В ноябре 1866 г. Эдвард Робертс получил патент за номером 59,936, известный как «взрывающаяся торпеда».

Этот метод предусматривал закладку торпеды в железный корпус, который содержал 15-20 фунтов взрывчатки. Корпус затем опускался в нефтяную скважину в ближайшем месте к месторождению. Потом взрывали торпеду с помощью проводов, а затем заполняли скважину водой.

Это изобретение позволило увеличить добычу нефти на 1200% на отдельных скважинах через неделю после проведения. Была создана Roberts Petroleum Torpedo Company, которая брала $ 100-$ 200 за ракету и роялти в размере 1/15 от прибыли, полученной от продукта.

Рождение промышленного «фрекинга».

Инноваций не было до 1930 г., когда бурильщики начали использовать невзрывоопасные жидкости, замену нашли в кислоте, вместо нитроглицерина. Это сделано скважины более производительными.
Несмотря на то, что рождение «фрекинга» относится к 1860-х гг., рождение современной технологии ГРП относится 1940-м гг. В 1947 г. Флойд Фаррис из Stanolind Oil & Gas начал исследовать взаимосвязи между добычей нефти и газа и количеством закачивания на каждую скважину.

Эти исследования привели к первым экспериментам с ГРП, которые были проведены на газовом месторождении Hugoton в графстве Грант Канзас в 1947 г. Тогда 1000 галлонов гелеобразного газолина с песком закачали в газоносный горизонт известняка на глубине 2400 футов. Затем туда закачали разжижитель. Хотя этот эксперимент не дал прироста добычи, он считается началом ГРП.

Несмотря на провал на газовом месторождении Hugoton, исследования продолжались. 17 марта 1949 г. Halliburton провела два коммерческих эксперимента; один в графстве Санкт-Стивенс в Оклахоме, а другой в Арчере, Техас. Эти результаты были гораздо более успешными.

После достижения успехов в 1949 г., «фрекинг» стал коммерческим. В 1960-х гг. Pan American Petroleum начала использовать эту технологию при бурении в Санкт-Стивенс в Оклахоме. В 1970-х гг. этот метод экстракции стали использовать на месторождениях Piceance, San Juan, Denver, Green River.

Даже президент Джеральд Форд удостоил внимание этому. В своем послании 1975 г. президент Форд сказал о развитии сланцевых нефтяных формаций, как части общего плана развития энергетики и снижения зависимости от импорта нефти.

Сегодняшнее положение во «фрекинге».

Современные положение во «фрекинге» началось в 1990-х гг. Когда Джордж Митчелл создал новую технологию, которая связала ГРП с горизонтальным бурением.

Сланцевый бум.

Технология, известная как ГРП, не является новой и использовалась более, чем 100 с лишним лет. Как мобильный телефон, компьютер или автомобиль, это не инновация, а прогресс в течение длительного времени. Остается вопрос: почему сланцевый нефтяной бум произошел через много лет, после того как технологии были изобретены?
Сравнение этих двух диаграмм, которые показывают динамику добычи 1990-х гг. и цены начиная с 2000 г., возможно поможет объяснить это.


В заключение, что позволило нефтяной и газовой промышленности добывать нефть из сланцевых пород в течение последних 7 лет - высокие цены. Если бы не высокие цены на нефть, то никому бы не пришло в голову вкладывать в нефтяную и газовую промышленность, а добыча нефти в США продолжала бы падать.

Необходимый комментарий к статье .

Ну это как в извечном споре кто первый. Вот и сейчас вспомнили полковника Робертса. То, что технология не новая давно известно и то, что СМИ нас зазомбировали. Зомби СМИ. Исследования по ГРП и СССР проводились. Даже была идея о проведении подземного ядепного взрыва для стимуляции притока нефти. Насколько "успешно" или "не успешно" - не знаю, но уверен на 100%, что такие экперименты были.

Насчет зомбо СМИ. У нас мало на интересуются положением в нефтегазе, зато все знают про Bakken, Eagle Fort, Marcellus, Monterrey. Хотя и в России много чего есть. Арктический шельф, также как и Восточная Сибирь - мало разведаны.

А.Кунгуров пишет:«Порядка 60% (а кто-то говорит и о 80%) отечественного рынка нефтесервисных услуг принадлежат четверке крупнейших западных компаний - Schlumberger, Baker Hughes, Weserford и Halliburton, деятельность которых ограничена наложенными правительством США санкциями в отношении РФ, а может быть и полностью прекращена. Стоит отметить, что зависимость от импорта в нефтяной отрасли более чем критическая - добыча нефти на арктическом шельфе без американцев невозможна в принципе; более 30% добычи российской нефти обеспечивается фрекингом (ГРП), который без участия «большой четверки» практически невозможен. Все самые современные технологии, как то бурение наклонных и горизонтальных скважин, высокотехнологические геофизические исследования - все эти работы выполнялись иностранцами и аффилированными с ними структурами» (http://kungurov.livejournal.com/104300.h tml)"

Т.е. посыл как бы ясен: это такие сложные технологии, что не всем это по уму. И что не все могут до этого допрыгнуть. Только отдельным категориям, как американцам, это под силу.

Анекдот в тему:

Международная конференция.
Англичанин : Англичанин Тревитик изобрел первый паровоз.
Русская делегация : Минуточку. Вот у нас есть документ, что паровоз изобрел русский иобретатель Черепанов.
Итальянец: радио изобрел итальянец Маркони.
РД: Минуточку. Вот у нас есть документ, что радио изобрел русский изобретатель Попов.
и т.д.
Француз: Французы изобрели минет.
РД: Минуточку. Вот письмо Царя Ивана Грозного Боярам: " А, сучьи потрохи, мало голов посносил, туда же, видел вас всех насквозь и ******** в рот.
- Семен Семенович, там нет слов "видел насквозь"
- А это, чтоб немцы со своим ренгеном не вые****

Сегодня добыча сланцевого газа методом гидроразрыва пласта или коротко фрекинг оказалась в списке технологий, которые популярно нелюбимы. Фрекинг представляет собой метод закачивания воды под высоким давлением для извлечения природного газа из взломанного пласта. Гидроразрыв пласта критикуют в мире довольно широко как опасный метод, который даже запрещен в ряде стран. Гидроразрыв пласта обвиняют в использовании токсичных компонентов, которые загрязняют окружающую среду, и провоцировании землетрясений. Противники метода утверждают, что результатом гидроразрыва пласта окажется загрязнение питьевой воды метаном до взрывоопасного состояния. А загрязнение токсинами вызовет неведомые заболевания. Звучит устрашающе? Ещё бы!

Гидроразрыв пласта отличная цель, на которую следует направить скептический взгляд.

В 2010 фильм Gasland бросил на рассмотрение публике обвиняющие заявления в отношении не только фрекинга. Фильм нарисовал жутковатую картину скрытности, жажды наживы любой ценой и бездумное загрязнение всего живого вокруг добывающими подземные ресурсы компаниями. Добывающие компании ответили веб страничкой «Развенчание Gasland» (Debunking Gasland) и другими публикациями, которые не только опровергали заявления, но и обрушились на продюсера фильма как активиста движения. Как было сказано в ответ на фильм, заявления брошены без геологической экспертизы и опыта в бурении скважин. Кому из противоборствующих сторон должен верить обычный человек с улицы? К сожалению, слушать приходится или противников гидроразрыва, или сторонников. Реже или никогда человек с улицы беспристрастно анализировал все за и против фрекинга на основании научно обоснованных фактов.

Природный газ находится в пластах сланцев или угля и покидает эти природные емкости через естественные разломы. Близкие к поверхности месторождения сравнительно легко извлечь бурением без фрекинга. Но более глубокие и более богатые месторождения находятся на глубинах 1,5-6 километров, где под более высоким давлением пласты имеют значительно меньшее количество разломов и проницаемость породы недостаточна, чтобы извлечь большое количество сланцевого газа. В этих глубоко залегающих плотных породах имеет смысл применить способ добычи сланцевого газа методом гидроразрыва пласта. Пласт сланца обычно не толще ста метров, поэтому скважины бурят горизонтально до глубины примерно один километр и устанавливают трубу, получая возможность создать гидравлический рычаг. Закачивая воду в небольшое отверстие трубы, можно создавать давление до 700 атмосфер и воздействовать на обширную площадь. Давление разрывает пласт на множество трещин около 1 мм, позволяя сланцевому газу покинуть насиженное место. Гидроразрыв пласта предполагает закачивать воду содержащую песок, это и есть суть всего метода. Частицы песка попадают в микротрещины, расширяя их, до состояния позволяющего вырваться газу. Далее устраиваются извлекающие скважины, и процесс добычи становится намного продуктивнее, так как у газа теперь достаточно путей покинуть глубокие пласты.

Хотя метод гидроразрыва пласта используется с начала 50х годов прошлого столетия, широкая добыча сланцевого газа получила развитие в 2000х годах. Около 90% скважин в США работают благодаря гидроразрыву пласта. Фрекинг несет экономические и политические выгоды стране, в результате увеличения добычи энергоносителя.

Итак, какие же проблемы возникают вследствие применения метода гидроразрыва? Наиболее драматичным и популяризованным эффектом оказалась питьевая вода, насыщенная метаном, основным компонентом природного газа. Насыщенной, как заверяют оппоненты, настолько, что поджигается спичкой. Горящая вода действительно встречается, но насколько явление имеет связь с добычей газа гидроразрывом это другой вопрос. Как многое в науке, ответ довольно не прост.

Для начала вспоминаем, что колодцы питьевой воды не бывают глубокими. Наиболее глубокий колодец в частном дворе не более пары сотен метров. Остальные значительно мельче. Гидроразрыв пласта происходит на километровых глубинах. В большинстве случаев водоносный пласт отделен от сланцевого пласта, претерпевшего гидроразрыв, несколькими скальными формированиями различных типов. В результате большой разницы глубины залегания, водоносный слой и газоносный пласт сообщаются между собой очень незначительно, если сообщаются вообще.

Однако, горящая вода это доказанный факт. Откуда метан попадает в воду, если не из фрекинга? Явление распространено во всем мире и случается там, где колодец вырыт в газоносном районе. Природный газ залегает на разных глубинах, в том числе и на небольшой глубине. Всегда можно ожидать проникание природного газа в колодцы в определенных регионах. Но и добыча газа без гидроразрыва пласта может приводить к попаданию газа в водоносный горизонт.

  • Во первых, изменения давления в пластах могут заставить газ уйти из зоны повышенного давления в зону пониженного давления.
  • Во вторых, плохо закупоренные газовые скважины могут давать утечку и дают утечку газа. Эти плохо закупоренные скважины на совести людей, чья обязанность надежно выполнить свою работу.
  • В третьих, давно заброшенные скважины никто уже не будет обслуживать и закупоривать заново.

Как видим, ни одна из перечисленных проблем не имеет отношения к добыче сланцевого газа методом гидроразрыва пласта.

Когда Комиссия по газу и нефти штата Колорадо (the Colorado Oil & Gas Conservation Commission) расследовала случай горящей воды в колодце, который был широко использован в Gasland, они обнаружили, что вода содержит пузырьки газа и попавший в воду природным путем метан никак не связан с его добычей. Колодец прорыт прямо в газоносный слой. Тем не менее, Gasland демонстрирует явление как следствие добычи сланцевого газа методом гидроразрыва, что не является правдой.

Владелец колодца борется с проблемой. Простейший и эффективнейший метод это проветривание колодца. Метан почти вдвое легче воздуха, вентиляция колодцев эффективно применяется задолго до изобретения фрекинга.
Фактом установленным является то, что метан в воде колодцев чаще встречается в местах, где применяется метод гидроразрыва пласта. В 2011 году широко опубликованное исследование Университета Герцога (Duke University) обнаружило, что когда газовая скважина расположена примерно в километре от колодца, вода в колодце содержит метана в 17 раз выше среднего показателя. Но когда громкие заголовки привлекают внимание к причинно – следственной связи, не вызывает сомнения, что именно так и связаны между собой добыча природного газа и содержание метана в воде колодцев.

В местах месторождений природного газа:
  • Газ обязательно присутствует в воде колодцев.
  • Газодобывающие компании приходят, чтобы добыть газ.

Упомянутое выше исследование говорит, что нет данных о содержании метана в воде колодцев до применения метода гидроразрыва пласта, таким образом нельзя утверждать, что именно появление газодобывающих компаний привело к появлению метана в воде. Исследование говорит, что 13% колодцев имеют повышенное содержание метана в воде и их следует проветривать.

Как же в отношении заявления, что метод гидроразрыва пласта при добыче сланцевого газа предполагает закачивание в грунт сотен токсинов? Да, это правда, частично. И не так как это преподносится. Главный химический элемент при фрекинге это вода, которая составляет 98,5% от состава, нагнетаемого в грунт. Около 1% состава это «расклинивающий агент» различных типов, обычно песок. Тип «расклинивающего агента» выбирается исходя из конкретных геологических условий. Оставшаяся часть процентного содержания раствора изменяется все время и состоит в основном из смазки для бурильного оборудования и составов для подвижности песка. Цель метода гидроразрыва пласта состоит в том, чтобы в образованные давлением воды трещины попали песчинки и удерживали трещины открытыми. Без хороших смазок, поверхностно-активных веществ и суспензий, например гуаровой камеди, песок сбивается в полостях и не достигает цели. В зависимости от типа скальной породы, могут быть в составе этих 0,5% раствора и кислоты, которые воздействуют на водопроницаемость породы. В составе этих же 0,5% можно найти ингибиторы коррозии, которые вводятся для повышения коррозионной стойкости труб, а также бактерицидные препараты против коррозирующих бактерий. Полный список ингредиентов для фрекинга широко доступен в Англоязычном вебе, как того требует закон, и любой интересующийся должен это видеть. Отличная возможность начать, это набрать в поиске «fracking fluid disclosure».

Если вы живете в США и обеспокоены составом жидкости для гидроразрыва пласта в конкретной скважине конкретного района, автор рекомендует сайт FracFocus, который позволит получить исчерпывающую информацию. Включая точное указание типа песка и других используемых компонентов. FracFocus является партнером индустрии газодобычи и Организации Защиты грунтовых вод (Groundwater Protection Council) в сотрудничестве с местными регулирующими органами.

Когда мы говорим об ингибиторах коррозии, бензоле, гуаровой камеди, любой житель региона должен проявить интерес. Итак, кому верить?
  • Активистам движения, утверждающим, что химикаты попадают прямиком в питьевую воду?
  • Или геологам и регулирующим органам, утверждающим, что упомянутые две жидкости нигде не пересекаются?

Обычному человеку довольно сложно понять, кто же говорит правду. Автор спросил своего приятеля из Пенсильвании, работающего геологом в официальной регулирующей организации, который сразу же оценил серьезность вопроса. В Пенсильвании добыча сланцевого газа методом гидроразрыва пласта ведется очень активно. Фильм Gasland однозначно неприемлемый источник информации и газовые компании избегают честного признания рисков дальнейших инвестиций. Обе стороны имеют серьезные мотивы для пропаганды. Консенсусом в вопросе, похоже, может стать беспристрастный источник информации: Агентство по Защите Окружающей Среды США (US Environmental Protection Agency). Если вы ненавидите добывающую компанию Халлибартон (Halliburton), как многие, вы полюбите Агентство Защиты (EPA). EPA опубликовало в сети заявление, направленное в Халлибартон, по причине непредоставления полной информации о технологическом процессе бурения. В ответ Халлибартон публично выпил стакан раствора для фрекинга на одной из конференций отрасли. Если вы хотите получить независимые базовые знания по технологии добычи газа методом гидроразрыва, можно заняться самообразованием прямо сейчас. Источников достаточно, в том числе официальный сайт EPA.
Во время написания данной статьи EPA выполняет грандиозное исследование безопасности грунтовых вод, на которые мог бы повлиять фрекинг. К сожалению, расследование движется с правительственной скоростью и запланировано к докладу на 2014год. Хорошей новостью является то, что EPA должно задокументировать любое подтвержденное загрязнение грунтовых вод в результате применения метода гидроразрыва пласта. Даже упомянутое выше исследование Duke University не обнаружило следов жидкости для фрекинга в колодцах. Однако зафиксировано немало случаев загрязнения воды случайными утечками жидкостей на поверхность грунта. Подобное постоянно случается с каждой компанией, транспортирующей или перекачивающей жидкости.

Несколько государств запретили применение метода гидроразрыва пласта до выяснения всех обстоятельств, но EPA не привело ни единого довода прекратить добычу сланцевого газа фрекингом в США. Как многие другие технологии, фрекинг имеет большое экономическое и политическое значение. Следовательно, вызывает бурные эмоции спорящих сторон. Выбирать вам. Или принять бурное участие, став на защиту одной из сторон. Или изучить, для начала, накопленную на сегодня научную информацию о методе гидроразрыва пласта.
Важность добычи ресурсов, энергонезависимость или доходы газодобывающих компаний не имеют к науке малейшего отношения. Пускай заинтересованные стороны думают об этом. И пускай наука определит степень безопасности фрекинга для общества.

Перевод Владимир Максименко 2013

Гидравлический разрыв пласта (ГРП или фрак, от английского hydraulic fracturing) является неотъемлемым процессом стимуляции скважины в процессе добычи нефти и газа из сланцевых пород.
Еще не так давно вокруг ГРП было очень много разговоров и очень многие организации выступали против разрешения на проведение ГРП. Главным аргументом против ГРП выдвигалась теория о том, что ГРП очень сильно загрязняет подземные источники пресной воды, вплоть до того, что из-под крана начинает течь вода с примесями газа, которые можно поджечь, о чем, кстати, был снят ролик, который попал во многие передачи и выпуски новостей.

Сегодня я затрону вопрос ГРП и мы посмотрим на то, как все выглядит на практике. А затем я расскажу о том, насколько правдивы разговоры о загрязнении пресных источников и пагубном влиянии ГРП. Так же я коснусь нашумевшего видео о том, как люди поджигаю воду в кране. Видео видели все, а вот историю за кадром этого видео почти никто не знает.

1. В начале разберемся с тем, что вообще такое ГРП, т.к. многие этого не знают. Традиционно нефть и газ добывались из песчаных пород, которые обладают высокой пористостью. Нефть в таких породах может свободно мигрировать среди песчинок к скважине. Сланцевые породы наоборот, имеют очень низкую пористость, а нефть в них содержится в трещинах внутри сланцевого пласта. Задача ГРП - увеличить эти трещины (или образовать новые), дав нефти более свободный путь к скважине. Для этого в нефтенасыщенный пласт сланца под высоким давлением нагнетается специальный раствор (на вид напоминающий холодец), состоящий из песка, воды и дополнительных химических добавок. Под высоким давлением нагнетаемой жидкости сланец образует новые трещины и расширяет уже имеющиеся, а песок (проппант) не дает трещинам сомкнуться, таким образом и улучшается проницаемость пород. ГРП бывает двух видов - проппантный (с использованием песка), и кислотный. Тип ГРП выбирается на основе геологии разрываемого пласта.

2. Для проведения ГРП требуется довольно большое количество техники и персонала. Технически же процесс идентичен не зависимо от компании, проводящей работу. К арматуре скважины подключается трейлер с блоком манифольдов. К этому трейлеру подключаются насосные установки нагнетающие раствор ГРП в скважину. За насосными станциями устанавливается смесительная установка, возле которой устанавливают трейлера с песком и водой. За всем этим хозяйством устанавливают станцию контроля. С противоположенной стороны арматуры устанавливается кран и каротажная машина.
***
Справа, на фотографии - блок манифольдов, слева - насосные трейлера, далее - арматура и за ней кран. Каротажная машина находится слева, за трейлерами. Ее видно на других фотографиях.

3. Процесс ГРП начинается в смесителе, куда подается песок и вода, а так же химические добавки. Все это смешивается до определенной консистенции, после чего подается в насосные установки. На выходе из насосной установки раствор ГРП попадает в блок манифольдов (это что-то вроде общего смесителя для всех насосных установок), после чего раствор отправляется в скважину. Процесс ГРП не проводится за один подход, а проходит этапами. Составлением этапов занимается команда петрофизиков на основе акустического каротажа, как правило, открытой скважины, проведенной во время бурения. В течении каждого этапа каротажная команда ставит в скважине заглушку, отделяя интервал ГРП от остальной скважины, после чего производит перфорацию интервала. Затем проходит ГРП интервала, и заглушка снимается. На новом интервале ставится новая заглушка, снова проходит перфорация, и новый интервал ГРП. Процесс ГРП может длится от нескольких дней, до нескольких недель, а количество интервалов может доходить до сотни.
***
Так выглядит смеситель. Шланги идущие к нему - линии подключения воды.

4. Помпы, используемые при ГРП оснащены дизельными двигателями мощностью от 1 000 до 2 500 л.с.. Мощные насосные прицепы способны нагнетать давление до 80 МПа, при пропускной способности 5-6 баррелей в минуту. Количество помп рассчитывается все теми же петрофизиками на основе каротажа. Высчитывается необходимое давление для разрыва пласта, и на его основе считается количество насосных станций. В течении работы количество используемых помп всегда превосходит расчетное количество. Каждая помпа работает в менее интенсивном режиме, чем это требуется. Делается это по двум причинам. Во-первых, это значительно сохраняет ресурс помп, во-вторых, при выходе из строя одной из помп она просто выводится из линии, а давление на остальных помпах слегка увеличивается. Таким образом поломка помпы не влияет на процесс ГРП. Это весьма важно, т.к. если процесс уже начат то остановка неприемлема.
***
Помпы подключенные к блоку манифольдов. "Будка" на заднем плане - пункт контроля работы смесителя. Противоположенный вид, от будки, - на второй фотографии.

5. Технология ГРП токовой не родилась вчера. Первые попытки "ГРП" предпринимались еще в 1900 года. Заряд нитроглицерина опускался в скважину, после чего детонировал. В то же время была опробования кислотная стимуляция скважин. Но оба метода, несмотря на раннее рождение, потребовали еще очень много времени, чтобы стать совершенными. Бум ГРП получил лишь в 1950-х годах, с развитием проппанта. Сегодня метод продолжает совершенствоваться и улучшаться. При стимуляции скважины продляется ее жизнь и увеличивается дебит. В среднем прирост нефтепотока к расчетному дебиту скважины составляет до 10 000 тонн в год. Кстати, ГРП проводится и на вертикальных скважинах в песчаннике, поэтому ошибочно думать, что процесс приемлем только в сланцевых породах и родился только что. Сегодня около половины скважин подвергаются ГРП стимуляции.

6. Тем не менее, с развитием горизонтального бурения очень многие люди стали высказываться против проведения стимуляций скважин, т.к. ГРП наносит вред окружающей среде. Было написано очень много трудов, снято видео и проведено расследований. Если читать все эти статьи, то все складно, но это только на первый взгляд, а мы же присмотримся к деталям.
***
Вид на блок манифольдов от арматуры. Кстати, ходить среди трейлеров и труб можно лишь во время каротажа, когда в системе нагнетания нет давления. Любой человек, появившийся среди трейлеров с помпами или труб во время проведения ГРП увольняется на месте без разговоров. Безопасность прежде всего.

7. Самый главный аргумент против ГРП - загрязнение грунтовых вод химическими веществами. Что именно входит в состав раствора - тайна компаний, но кое-какие элементы все же разглашены и есть в открытых публичных источниках. Достаточно обратиться к базе данных по ГРП "ФракФокус", и можно найти общий состав геля (1, 2). На 99% гель состоит из воды, лишь оставшийся процент - химические добавки. Сам проппант не входит в данном случае в подсчет, т.к. не является жидкостью, да и безвреден. Итак, что же входит в оставшийся процент? А туда входят - кислота, противокоррозийный элемент, фрикционная смесь, клей и добавки для вязкости геля. К каждой скважине элементы из списка подбираются индивидуально, всего их может быть от 3 до 12, попадающих в одну из вышеперечисленных категорий. Действительно, все эти элементы токсичны, и не приемлемы для человека. Примером конкретных добавок являются например: Ammonium persulfate, Hydrochloric acid, Мuriatic acid, Ethylene glycol.
***
Каротажная машина. Команда собирает заряды и готовит заглушку для проведения перфорации.

8. Как эти химические вещества могут подняться на верх минуя ловушки удерживающие нефть? Ответ мы находим в отчете Ассоциации по защите окружающей среды (3). Случиться это может либо из-за взрывов на скважинах, либо из-за разливов во время проведения ГРП, либо из-за разливов утилизационных бассейнов, либо из-за проблем с целостностью скважин. Первые три причины не в состоянии заразить источники воды на огромных площадях, остается лишь последний вариант, который сегодня официально подтвержден Академией наук США (4).

9. Кому интересно как отслеживается движение жидкостей внутри пород, то делается это с помощью так называемых трейсеров. Специальная жидкость, имеющая определенный радиационный фон, нагнетается в скважину. После чего в соседних скважинах, и на поверхности, ставят сенсоры, реагирующие на излучение. Таким образом можно смоделировать очень точно "общение" скважин между собой, а так же обнаружить утечки внутри обсадных колонн скважин. Не беспокойтесь, фон у таких жидкостей очень слабый, а радиоактивные элементы используемые при таких исследованиях очень быстро разлагаются не оставляя следов.

10. Нефть на поверхность поднимается не в чистом виде, а с примесями воды, грязи и различных химических элементов, в том числе и химическими добавками использованными во время ГРП. Проходя через сепараторы нефть отделяется от примесей, а примеси утилизируются через специальные утилизационные скважины. Говоря простым языком - отходы закачиваются обратно в землю. Обсадная труба зацементирована, но она ржавеет со временем, и в какой-то момент в ней появляется течь. Если труба имеет хороший цемент в затрубном пространстве - то это ржавчина не имеет значения, утечки из трубы не будет, если же цемента нет, или цементная работа была выполнена плохо - то жидкости из скважины попадут в затрубное пространство, откуда могут попасть куда угодно, т.к. течь может быть выше нефтяных ловушек. Эта проблема известна инженерам очень давно, и фокус на этой проблеме был заострен еще в начале 2000-х, т.е. задолго до обвинений в адрес ГРП. Еще тогда когда многие компании создали внутри себя отдельные ведомства отвечающие за целостность скважин и их проверку. Утечки могут приносить с собой в верхние слои пород много грязи, газа (не только природного, но и сероводорода), тяжелых металлов и способны заразить чистые источники воды и без химических элементов ГРП. Поэтому тревога поднятая сегодня является весьма странной, проблема существовала и без ГРП. Особенно это касается старых скважин, которым более 50 лет.

11. Сегодня регламенты многих штатов разительно быстро меняются, особенно это касается Техаса, Нью-Мексико, Пенсильвании и Северной Дакоты. Но к удивлению многих, - вовсе не из-за ГРП, а из-за взрыва платформы БП в Мексиканском заливе. Во многих случаях компании спешно проводят каротажи по проверке целостности обсадной трубы и цемента за ней, и передают эти данные в государственные комиссии. К слову заметить, что пока каротажи по целостности скважин официально никто не требует, но компании самостоятельно тратят деньги и делают данную работу. При неудовлетворительном состоянии скважины глушатся. Надо отдать должное инженерам, например из 20 000 скважин инспектированных в Пенсильвании, в 2008 году, было зарегистрировано лишь 243 случая утечек в верхние водные слои (5). Иными словами, ГРП не имеет отношения к заражению и газификации пресных вод, виной тому является плохая целостность скважин, которые не были заглушены вовремя. А токсичных элементов в нефтенасыщенных пластах полным полно и без химических добавок используемых во время проведения ГРП.

12. Другой аргумент, который приводят противники ГРП - чудовищное количество пресной воды требуемое для проведения операции. Воды для ГРП требуется действительно много. Отчет Ассоциации по защите окружающей среды дает цифры, всего с 2005 по 2013 года было использовано 946 млрд. литров воды, при том, что за это время было проведено 82 000 операций ГРП (6). Цифра интересная, если не задуматься. Как я упомянул до этого, ГРП начал широко использоваться с 50-х годов, но статистика начинается лишь с 2005, когда было начато массовое горизонтальное бурение. Почему? Хорошо было бы упомянуть общее количество операций ГРП и количество воды, израсходованное до 2005 года. Ответ на данный вопрос, частично, можно найти все в той же базе данных по ГРП "ФракФокус" - начиная с 1949 года было проведено более 1 миллиона операций ГРП (7). Так сколько же воды было использовано за это время? Об этом отчет почему-то не говорит. Наверное потому, что 82 тысячи операций как-то меркнут на фоне миллиона.

13. Вопросов к EPA (Environmental Protection Agency) тоже много. На EPA очень многие любят ссылаться, как на очень веский источник. Источник и в правду веский, но и веский источник может дать дезу. В свое время EPA нашумели на весь мир, проблема в том, что наделав шуму, мало кто знает чем все кончилось, а кончилась история весьма плачевно, для некоторых.
***
Так выглядит проппант. Его называет песком, на самом деле это не тот песок, который добывается в карьерах и в котором играют дети. Сегодня проппант изготавливается на специальных заводах, и бывает он разных видов. Обычно идентификация идет соразмерно песчинкам, например это - проппант 16/20. В отдельном посте непосредственно о процессе ГРП я подробно остановлюсь на типах проппанта и покажу его различные виды. А песком его называют потому, что при первом ГРП компания Халлибертон использовала обычный мелкий речной песок.

14. С EPA связано две очень интересные истории (8). Итак, первая история.
В пригороде Далласа, в городе Форт Ворс, нефтяная компания осуществляла бурение скважин для добычи газа, естественно с использованием ГРП. В 2010 году, региональный директор EPA, доктор (стоит обратить внимание на высокий статус и наличие хорошего, высшего, образования) Ал Армендариз, подал чрезвычайный иск в суд против компании. В иске говорилось что люди живущие вблизи скважин компании находятся в опасности, т.к. скважины компании газифицируют водные скважины находящиеся вблизи. В тот момент накал страстей вокруг ГРП был очень высок, и терпение ЖД комиссии Техаса взорвалось. Для тех, кто забыл - в Техасе вопросами земельного пользования и бурения занимается Железнодорожная комиссия. Была составлена научная группа, которую отправили для исследования качества воды. Верхний метан в под Форт Ворсом находится на глубине 120 метров и никакой шапки не имеет, в то время как глубина водных скважин не превышала 35 метров, а ГРП проходящий на скважинах компании был осуществлен на глубине 1 500 метров. Так вот, оказалось, что никаких тестов для исследования пагубного влияния EPA не проводили, а просто взяли и заявили, - ГРП загрязняет пресную воду, и подали в суд. А комиссия, взяла и провела тесты. Проверив целостность скважин, взяв пробы грунта и проведя необходимые тесты комиссия вынесла единый вердикт - ни одна скважина не имеет утечек и к газификации пресной воды отношения не имеют. EPA проиграли два суда, компании и второй суд непосредственно ЖД комиссии, после чего директор EPA, - доктор Ал Армендариз уволился "по собственному желанию". Сейчас он работает в ночном клубе в столице Техаса, городе Остин.

К слову, проблема газификации воды действительно есть, но она никак не связана с ГРП, а связана с очень неглубоким залеганием метана. Газ из верхних слоев постепенно поднимается наверх и попадает в водные скважины. Это естественный процесс, никак не связанный вообще с добычей и бурением. Такой газификации подвержены не только водные скважины, но и озера и родники.
***
Справа - ковш смесителя. Слева - контейнер с проппантом. Проппант подается в ковш на конвейерной ленте, после чего смеситель забирает его в центрифугу, где происходит его смешение с водой и химическими добавками. После чего гель подается к помпам.

15. А теперь дорогие читатели, сядьте поудобнее, запаситесь попкорном и пристегните ремни - я расскажу о нашумевшем видео, в котором люди поджигают воду текущую из-под крана.

Сразу за историей с нерадивым доктором из EPA, ЖД комиссия обратила свой взор на очень популярное видео, которое к тому моменту где только не показывали. Некий Стивен Липский, хозяин скважин с пресной водой, и консультант по вопросом окружающей среды Алиса Рич сняли видео, в котором они поджигают воду, идущую из-под крана. Водозабор производился из водных скважин Стивена. Вода загорелась, якобы, из-за высокой концентрации газа, в которой виновата нефтяная компания со своим злосчастным ГРП. На самом деле, при расследовании, оба обвиняемых сознались, что к системе трубопровода был подключен баллон с пропаном, и сделано это было с целью привлечения новостных ведомств, которое заставило бы людей верить в то, что ГРП виновато в газификации пресной воды. В данном случае было доказано, что Алиса Рич знала о фальсификации, но хотела передать заведомо ложные данные в EPA и между Алисой и Стивеном был сговор, для оклеветанная деятельности компании. Опять же, было доказано, что компания и процесс ГРП не наносят вреда окружающей среде. После этого инцидента, кстати, все как-то сконфуженно притихли относительно обвинений ГРП в газификации воды. Видимо отправляться за решетку никто не торопится. Или все разом поняли, что процесс этот естественен и был до появления ГРП?

Итак, подводя итог всему вышесказанному - любая деятельность человека наносит вред окружающей среде, добыча нефти - не исключение. ГРП, сам по себе, не наносит вреда окружающей среде, и в широком масштабе существует в промышленности уже более 60 лет. Химические добавки, закачиваемые в процессе ГРП на большую глубину не представляют никакой угрозы верхним водным слоям. Действительной проблемой сегодня является цементаж и сохранение целостности скважин, над которой компании усиленно работают. А химических элементов и грязи, которые способны отравить пресную воду, в нефтенасыщенных пластах хватает и без ГРП. Сам же процесс газификации естественен и о такой проблеме знали и без ГРП, с этой проблемой боролись и до ГРП.

Сегодня нефтяная промышленность намного чище и экологичное, чем когда-либо в истории, и продолжает бороться за сохранение окружающей среды, а многие истории и байки идут от очень недобросовестных работников официальных ведомств. К сожалению, такие истории очень быстро остаются в памяти большинства людей, и очень медленно опровергаются фактами, которые мало кому интересны.
Так же нужно не забывать, что война с нефтяными компаниями была, есть и будет всегда, и дешевый газ в огромных объемах не всем ко двору.

Важно, дополнение:
В связи с тем, что в комментариях начали появляться упоминания про Пенсильванию и наличие газа в скважинах с пресной водой, я решил так же прояснить данный вопрос. Пенсильвания очень богата газом, и один из самых мощных бумов газового горизонтального бурения пришелся как раз на этот штат, в особенности на северную его часть. Проблема в том, что залежей газа (метана и этана) в штате несколько. Залежи верхнего газа называются Devonian, в то время как залежи глубокого сланцевого газа имеют название Marcellus. После детального молекулярного анализа состава газа, и проверки 1 701 водной скважины (с 2008 по 2011 года) на севере штата, был дан единый вердикт - в водных скважинах нет сланцевого газа, а присутствует метан и этан из верхнего слоя Devonian. Газификация скважин естественна и связана с геологическими процессами, идентично проблеме Техаса. Процесс ГРП никак не способствует миграции сланцевого газа на поверхность.

Кроме того, в Пенсильвании, в связи с тем, что это был один из первых штатов в США вообще, сохранилось очень, очень много документов, уходящих в историю вплоть до начала 1800-х годов, в которых упоминаются горящие ручьи, а так же воспламеняющиеся источники воды, с обильной концентрацией газа в ней. Есть масса документов, в которых упоминается наличие очень высокой концентрации метана на глубине 20, лишь 20 метров! Масса документов указывает на очень высокую концентрацию метана в реках и ручьях, более 10 mg/L. Поэтому, в отличие от Техаса, где о подобных документах я лично ничего не слышал, в Пенсильвании проблема газификации была задокументированная еще до начала вообще хоть какого-либо бурения как такового. Поэтому о каком вреде ГРП идет речь, если есть документы которым более 200 лет, а так же молекулярно доказано, что газ в водных скважинах не является сланцевым? Организации, борющиеся с ГРП о таких документах почему-то забывают, либо подобными исследованиями не занимаются и не интересуются.

Так же стоит обратить внимание на то, что Пенсильвания является одним из штатов, который требует у операторов анализа качества пресной воды, согласно Акту 13, до начала бурения, для отслеживания уровня возможного загрязнения. Так вот, при анализе качества воды, почти всегда допустимая концентрация растворенного газа, 7000 μg/L, является превышенной. Вопрос, почему тогда люди не жаловались на состояние здоровья, экологию и загубленную землю на протяжении двухсот лет, а вдруг спохватились массово жаловаться с началом газового бурения? (9).
Газификация естесственна, и не является следствием ГРП и бурения вообще, эта проблема есть в любой стране, с залежами газа на поверхности.

Постскриптум:
Я думаю, многим будет интересно узнать о ГРП в России. На сегодняшний день в России работает около сотни комплексов ГРП. Все комплексы - иностранной сборки. Интерес к ГРП Россия проявляет с послевоенных времен, но в связи с огромными запасами газа в принципе ГРП не имеет бурного развития на сегодняшний день. Хотя работы и тесты проводятся.

Эта технология, применяемая для интенсификации работы и повышения отдачи нефтедобывающих скважин уже более полувека, вызывает, пожалуй, наиболее жаркие споры среди экологов, ученых, простых граждан, а нередко даже и самих работников добывающей отрасли. Между тем смесь, которая закачивается в скважину во время гидроразрыва, на 99% состоит из воды и песка, и лишь на 1% – из химических реагентов.

Что мешает нефтеотдаче

Основная причина низкой продуктивности скважин наряду с плохой естественной проницаемостью пласта и некачественной перфорацией - снижение проницаемости призабойной зоны пласта. Так называется область пласта вокруг ствола скважины, подверженная наиболее интенсивному воздействию различных процессов, сопровождающих строительство скважины и ее последующую эксплуатацию и нарушающих первоначальное равновесное механическое и физико-химическое состояние пласта. Само бурение вносит изменения в распределение внутренних напряжений в окружающей забой породе. Снижение продуктивности скважин при бурении происходит также в результате проникновения бурового раствора или его фильтрата в призабойную зону пласта

Причиной низкой продуктивности скважин может быть и некачественная перфорация вследствие применения маломощных перфораторов, особенно в глубоких скважинах, где энергия взрыва зарядов поглощается энергией больших гидростатических давлений.

Снижение проницаемости призабойной зоны пласта происходит и при эксплуатации скважин, сопровождающейся нарушением термобарического равновесия в пластовой системе и выделением из нефти свободного газа, парафина и асфальтосмолистых веществ, закупоривающих поровое пространство коллектора. Интенсивное загрязнение призабойной зоны пласта отмечается и в результате проникновения в нее рабочих жидкостей при проведении в скважинах различных ремонтных работ. Приемистость нагнетательных скважин ухудшается вследствие закупорки порового пространства пласта продуктами коррозии, илом, нефтепродуктами, содержащимися в закачиваемой воде. В результате протекания подобных процессов возрастают сопротивления фильтрации жидкости и газа, снижаются дебиты скважин и возникает необходимость в искусственном воздействии на призабойную зону пласта с целью повышения продуктивности скважин и улучшения их гидродинамической связи с пластом.

Технология фрекинга

Для повышения нефтеотдачи пласта, интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин используется метод гидровлического разрыва пласта или фрекинга. Технология заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида к забою скважины. После проведения ГРП дебит скважины, как правило, резко возрастает – либо же существенно снижается депрессия. Технология ГРП позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна.

Гидравлический разрыв пласта (ГРП) является одним из наиболее эффективных средств повышения производительности скважин, поскольку приводит не только к интенсификации выработки запасов, находящихся в зоне дренирования скважины, но и, при определенных условиях, позволяет существенно расширить эту зону, приобщив к выработке слабо дренируемые зоны и пропластки – и, следовательно, достичь более высокой конечной нефтеотдачи.

История метода ГРП

Первые попытки интенсификации добычи нефти из нефтяных скважин были предприняты еще в 1890-х годах. В США, где добыча нефти в это время развивалась стремительными темпами, был успешно испытан метод стимулирования добычи из плотных пород с помощью нитроглицерина. Идея заключалась в том, чтобы взрывом нитроглицерина раздробить плотные породы в призабойной зоне скважины и обеспечить увеличение притока нефти к забою. Метод успешно применялся некоторое время, несмотря на свою очевидную опасность.

Первый коммерчески успешный гидроразрыв пласта был осуществлен в 1949 году в США, после чего их количество стало резко возрастать. К середине 50-х годов количество проводимых ГРП достигло 3000 в год. В 1988 году общее количество проведенных ГРП перевалило за 1 миллион операций, и это только в США.

В отечественной практике метод ГРП начали применять с 1952 года. Пик применения метода был достигнут в 1959 году, после чего количество операций снизилось, а затем эта практика и вовсе прекратилась. С начала 1970-х и до конца 1980-х ГРП в отечественной нефтедобыче в промышленных масштабах не проводились. В связи с вводом в разработку крупных нефтяных месторождений Западной Сибири потребность в интенсификации добычи попросту отпала.

И день сегодняшний

Возрождение практики применения ГРП в России началось только в конце 1980-х. В настоящее время лидирующие позиции по количеству проводимых ГРП занимают США и Канада. За ними следует Россия, в которой применение технологии ГРП производят в основном на нефтяных месторождениях Западной Сибири. Россия – практически единственная страна (не считая Аргентины) за пределами США и Канады, где ГРП является привычной практикой и воспринимается вполне адекватно. В других странах применение технологии гидроразрыва затруднено из-за местных предубеждений и недопонимания технологии. В некоторых из них действуют существенные ограничения по использованию технологии ГРП вплоть до прямого запрета на ее применение.

Ряд экспертов утверждают, что использование технологии гидроразрыва при добыче нефти – это нерациональный, варварский подход к экосистеме. В то же время, метод широко применяется практически всеми крупными нефтяными компаниями.

Применение технологии ГРП достаточно обширно – от низко- до высоко проницаемых коллекторов в газовых, газоконденсатных и нефтяных скважинах. Кроме того, с использованием ГРП можно решать специфические задачи, например, ликвидировать пескопроявления в скважинах, получать информацию о ФЕС объектов испытания в поисково-разведочных скважинах и т.д..

В последние годы развитие технологий ГРП в России направлено на увеличение объемов закачки проппанта, производство азотных ГРП, а также многостадийных ГРП в пласте.

Оборудование для гидроразрыва пласта

Оборудование, необходимое для гидроразрыва пласта, производит целый ряд предприятий, как зарубежных, так и отечественных. Одно из них - компания «ТРАСТ-ИНЖИНИРИНГ» , которая представляет широкий выбор оборудования для ГРП в стандартном исполнении, так и в виде модификации, выполняемой по желанию заказчика.

В качестве конкурентных преимуществ продукции ООО «ТРАСТ-ИНЖИНИРИНГ» необходимо отметить высокую долю локализации производства; применение самых современных технологий проектирования и производства; использование узлов и комплектующих от мировых лидеров отрасли. Важно отметить и присущую специалистам компании высокую культуру проектирования, производства, гарантийного, постгарантийного и сервисного обслуживания. Оборудование для ГРП производства ООО «ТРАСТ-ИНЖИНИРИНГ» легче приобрести благодаря наличию представительств в Москве (Российская Федерация), Ташкенте (Республика Узбекистан), Атырау (Республика Казахстан), а также в Панчево (Сербия).

Разумеется, метод ГРП, как и любая другая технология, применяемая в добывающей отрасли, не лишен определенных недостатков. Один из минусов фрекинга – в том, что положительный эффект операции может быть сведён на нет непредвиденными ситуациями, риск возникновения которых при столь обширном вмешательстве довольно велик (например, возможно непредвиденное нарушение герметичности близлежащего водного резервуара). Вместе с тем. гидравлический разрыв пласта является сегодня одним из наиболее эффективных методов интенсификации скважин, вскрывающих не только низкопроницаемые пласты, но и коллекторы средней и высокой проницаемости. Наибольший эффект от проведения ГРП может быть достигнут при внедрении комплексного подхода к проектированию гидроразрыва как элемента системы разработки с учетом разнообразных факторов, таких как проводимость пласта, система расстановки скважин, энергетический потенциал пласта, механика трещины, характеристики жидкости разрыва и проппанта, технологические и экономические ограничения.