Путина просят построить для России «фабрики будущего». Что это такое, и зачем они нужны

Армин Грюнвальд (Armin Gruenewald)

Любая отрасль - от автомобилестроения и авиационно­космической промышленности до станкостроения и энергетики - зависит от качества конструкторско­технологической подготовки производства и механообработки в цехах. Нередко детали и сборочные единицы изготавливаются небольшими подразделениями или независимыми компаниями, которые сталкиваются с ростом конкуренции и необходимостью применять новые материалы и технологии. На сложные цепочки поставок распространяются все более ужесточающиеся нормативные требования, а сроки разработки требуется постоянно сокращать.

Европейский изготовитель пресс­форм конкурирует с производителями, работающими на рынках с менее жесткими нормативными требованиями, а также с региональными компаниями. При этом оснастку приходится разрабатывать как можно быстрее, чтобы не отставать от сроков разработки изделий, - ведь длительность процессов сократилась наполовину. Например, раньше на создание новой модели автомобиля уходило девять­десять лет, а теперь этот срок уменьшился до четырех. Соответственно сократились и сроки разработки деталей.

Для повышения эффективности производства нередко пытаются автоматизировать отдельные этапы при помощи различных систем, электронных таблиц и бумажных документов. Если автоматизация выполняется неверно, то в результате получаются разрозненные процессы, а бесценная информация и важнейшие производственные ноу­хау не используются должным образом. Подобный подход не повышает ни эффективности, ни конкурентоспособности предприятия.

Для выхода на новый уровень эффективности и победы в конкурентной борьбе машиностроительным предприятиям требуется новая концепция ведения бизнеса, в полной мере реализующая возможности, предоставляемые самыми современными технологиями. Единая интегрированная система создает интеллектуальные модели и процессы, объединяя этапы технологического проектирования и производства в рамках «цифровой цепочки», проходящей через все предприятие. Такой подход оптимизирует производственные процессы, снижает себестоимость и сокращает сроки выполнения заказов.

Вместо того чтобы сначала создать 3D­модель в системе автоматизированного проектирования (CAD­системе), а затем осуществить импорт и экспорт в разные системы, следует создать цифровой двойник - точную виртуальную копию реального изделия. Этот двойник передается между службами предприятия без потери данных, помогая выпускать продукцию, полностью соответствующую требованиям заказчика.

Внедрение цифрового производственного процесса сразу же повышает производительность и эффективность работы даже небольших предприятий, а также способствует дальнейшему росту бизнеса. Дигитализация - это не только устранение ручного ввода данных и изменений модели на каждом этапе разработки. Применение единой системы и интеллектуальной модели обеспечивает поддержку параллельной работы специалистов. Например, подготовка контроля качества изготовления детали выполняется одновременно с разработкой управляющих программ в CAM­системе. В результате происходит автоматизация всего процесса в целом при сохранении его гибкости.

Когда в конструкцию вносятся изменения, они автоматически передаются на все этапы процесса без ручного ввода данных. Предусмотрено сравнение геометрии 3D­модели и готовой детали, измеряемой на координатно­измерительной машине (КИМ). При этом полученная информация отправляется обратно в CAM­систему. Это значительно упрощает поиск и устранение несоответствий. Создается замкнутый контур совершенствования конструкторско­технологических проектных решений. Он повышает качество и производительность, а также сокращает сроки наладки оборудования. Качественные детали изготавливаются быстрее, что увеличивает число выполняемых заказов. Более того, при выполнении следующего заказа можно применить уже имеющиеся модели, доработав их под новые требования, что позволяет не начинать каждый раз проектирование с нуля. Повторное использование имеющихся на предприятии оптимальных рабочих процессов и ноу­хау - самый эффективный способ повышения производительности и качества.

Дигитализация не только автоматизирует выпуск деталей, точно соответствующих требованиям, но и упрощает внедрение новых цифровых технологий (промышленные роботы, аддитивное производство) даже на небольших предприятиях.

Раньше роботы в основном применялись для позиционирования и транспортировки заготовок, включая загрузку и выгрузку деталей на станках. Сегодня же они чаще используются и для выполнения механической обработки. Например, управляемый на основе цифровой модели робот способен точно просверлить сотни тысяч отверстий в крыле самолета. Но для этого необходима интеграция конструкторской модели с системами программирования роботов и станков ЧПУ и с технологическим оборудованием.

3D­печать и другие виды аддитивного производства позволяют изготавливать детали, которые в прошлом было просто невозможно сделать, а также использовать новые материалы и конструкторские решения, улучшающие технические характеристики изделия, снижающие массу и упрощающие сборку. Однако внедрение подобных процессов требует перехода на совершенно другие методики проектирования, значительно отличающиеся от разработки деталей, изготавливаемых механообработкой. В частности, создаваемые для 3D­печати детали отличаются минимальной материалоемкостью и при этом совершенно не похожи на привычные. При помощи методики генеративного моделирования инженеры создают сверхлегкие конструкции, не уступающие по своим характеристикам традиционным. Такие детали могут быть пустотелыми и иметь сложные «органические» формы. При этом необходимо избегать создания излишних поддерживающих элементов - их потребуется удалять, что может замедлить производство. Важнейшим аспектом становится наличие системы автоматизированного проектирования, способной выполнять топологическую оптимизацию традиционных конструкций. Методы аддитивного производства позволяют изготавливать такие изделия нового поколения с минимальными затратами на наладку и оснастку.

Цифровой завод - это бесшовное объединение важнейших этапов проектирования и изготовления деталей. Процесс­ориентированный подход объединяет сотрудников, данные и производственные ресурсы. Он гарантирует изготовление изделий, отвечающих всем требованиям заказчика, а также увеличение прибыльности и эффективности.

Цифровой завод в действии

Чтобы воспользоваться всеми преимуществами цифрового производства, не обязательно быть промышленным гигантом. Австрийский изготовитель пресс­форм HAIDLMAIR начинал как небольшая кузнечная мастерская, но при этом компания постоянно внедряла новейшие технологии. Когда нынешний генеральный директор компании Марио Хейдлмар (Mario Haidlmair) унаследовал эту должность у своего отца, он выяснил, насколько неэффективным было использование разрозненных и нередко несовместимых систем для проектирования деталей и разработки управляющих программ. Внедрив решения от Siemens, компании удалось построить оптимизированный сквозной процесс, в рамках которого создается цифровой двойник каждой детали. «В отделе программирования станков с ЧПУ мы точно воссоздаем ситуацию, возникающую на конкретном станке», - поясняет г­н Хейдлмар.

Над изготовлением пресс­форм работает множество различных отделов компании, и все они используют интеллектуальную 3D­модель. Это позволяет проверить характеристики еще не изготовленной детали, разработать управляющие программы для токарных, трех­ и пятикоординатных станков с ЧПУ в системе NX CAM от Siemens, а также проконтролировать технологический процесс сборки. Модели, данные по режущему инструменту, технологические операции и управляющие программы для ЧПУ хранятся в системе Teamcenter, поэтому все отделы получают доступ к единому источнику актуальной информации. Подобная цифровая цепочка обеспечивает эффективное взаимодействие сотрудников. Оператор станка, имея CAD­модель детали и взаимодействуя с конструктором и программистом станков с ЧПУ, быстро устраняет все возникающие проблемы еще до начала обработки.

Интегрированная система проектирования деталей, управления технологическими процессами и оборудованием снижает себестоимость (по оценке Хейдлмара - на 15­20%), а это «сотни тысяч евро в год». Еще одно преимущество, особенно при работе на высококонкурентном рынке - «сокращение сроков выполнения заказов».

С целью дальнейшей автоматизации процессов и повышения производительности компания Haidlmair внедряет стратегию механической обработки на основе элементов, поддерживаемую системой NX CAM. «Мы хотим добиться того, чтобы порядка 80% операций электроэрозионной обработки выполнялось полностью автоматически, без вмешательства оператора», - отмечает системный администратор CAM­решений Стефан Пендль (Stefan Pendl). И речь идет не только о сокращении затрат. Цель Хейдлмара - превратить небольшое производство в «лучшего в мире производителя пресс­форм». Он пытается достичь оптимального качества продукции: «Я с оптимизмом смотрю в будущее и уверен, что мы сможем добиться снижения себестоимости при одновременном росте качества. А именно этого ожидают все наши заказчики». 

Проект «Наставники: не рядом, а вместе!»

Лидер проекта: Александра Юрьевна Телицына, исполнительный директор MOO «Старшие Братья Старшие Сестры» .

Проект ориентирован на детей, находящихся в трудной жизненной ситуации. Адаптироваться и полноценно участвовать в жизни общества таким детям помогает индивидуальное общение с наставниками. Суть проекта - привлечение в качестве наставников успешных взрослых людей - деятелей культуры и спорта, представителей бизнеса и власти. В настоящее время в проекте принимают участие директора АСИ. Программа индивидуального наставничества дает детям возможность почувствовать уверенность в своих силах, развить лидерские компетенции, сориентироваться в выборе профессии.

АСИ окажет информационную и административную поддержку, поможет наладить коммуникацию с региональными органами власти с целью тиражирования проекта.

Проект «Этномир»

Лидер проекта: Руслан Фаталиевич Байрамов, президент Международного Фонда «Диалог Культур - Единый Мир» .

Культурно-образовательный центр «Этномир» в Калужской области за десять лет существования принял полтора миллиона гостей. Этнографический парк знакомит с жизнью, традициями и культурой народов России и мира. На аутентично воссозданных дворах размещены ремесленные мастерские, дома-гостиницы, музеи, рестораны традиционной кухни, сувенирные магазины; в Центре работают образовательные программы для детей, проходят фестивали, карнавалы, выставки, конференции, концерты, связанные с культурой разных стран и народностей.

В планах проекта - сделать «Этномир» креативным городом дружбы народов. Парк рассчитывает расширить свою территорию и увеличить посещаемость до 10 миллионов человек в год.

АСИ окажет консультационную и методологическую поддержку по созданию модельной программы дополнительного образования детей на базе культурно-образовательного центра «Этномир», а также содействие в развитии международных контактов.

Публикация подготовлена сотрудниками CompMechLab ® по материалам spbstu.ru , kremlin.ru , strf.ru , minpromtorg.gov.ru и собственной информации.

)
Тема 2. Цифровая экономика
Тема 2.1 Маркетинг и современные информационные технологии (презентация , конспект , самостоятельная работа)
Тема 2.2 Цифровой след потребителя (презентация , конспект)
Тема 3. Концепция Фабрик Будущего
Тема 3.1 Современные технологические тренды и предпосылки, ведущие к созданию Фабрик Будущего (презентация , конспект)
Тема 3.2 Архитектура Фабрик Будущего. Цифровая - Умная - Виртуальная Фабрики (презентация , конспект)
Тема 4. Цифровое проектирование. Цифровая фабрика.
Тема 4.1 Компьютерный инжиниринг, возможности цифрового проектирования (презентация , конспект)
Тема 4.2 Построение Цифровой фабрики (презентация , конспект)
Тема 5.Аддитивные технологии
Тема 5.1 Обзор существующих технологий (презентация , конспект)
Тема 5.2. Перспективы использования 3D-печати для Фабрик Будущего (презентация , конспект)
Тема 6. Новые материалы
Тема 6.1 Композитные материалы (презентация , конспект)
Тема 6.2 Мета, наноматериалы и суперсплавы (презентация , конспект)
Экзамен по модулю 1

Модуль 2
Тема 7. Инструменты цифровой трансформации компании
Тема 7.1 Понятие цифровой трансформации (презентация , конспект)
Тема 7.2 Интернет вещей и технологии работы с Big Data (презентация , конспект , самостоятельная работа)
Тема 7.3 Облачные решения для цифровой трансформации (презентация , конспект)
Тема 8. Управление цифровой компанией (презентация , конспект)
Тема 9. Умная фабрика
Тема 9.1 Концепция «Умной» Фабрики (презентация , конспект)
Тема 9.2 Системы управления умным производством (презентация , конспект , самостоятельная работа)
Тема 9.3 Введение в робототехнику (презентация , конспект)
Тема 10. Виртуальная фабрика
Тема 10.1 Концепция Виртуальной Фабрики (презентация , конспект)
Тема 10.2 Построение логистических сетей для Виртуальной Фабрики (презентация , конспект)
Экзамен по модулю 2
Итоговая аттестация. Прокторинг

Курс состоял из 10 тем, а некоторые темы состояли из подтем, содержание которого я описал выше. По каждой подтеме необходимо просмотреть видеолекции и сдать тесты. К каждой видеолекции выложены конспекты лекций и презентации к ним в формате pdf-файлов. Также в составе некоторых тем присутствуют практические и самостоятельные работы, для сдачи которых необходимо также пройти тестирование. Курс делится на два модуля, по которым нужно сдать экзамены тоже в виде тестов, но на этот раз время на сдачу ограничено в размере одного часа. У каждого контрольного задания (тест, практическая работа) есть срок выполнения (дедлайн), по истечении которого даже правильные ответы система принимать не будет! В расписании курса указан дедлайн каждого задания, который варьируется от двух до четырех недель в зависимости от его сложности. И в заключении необходимо сдать общий итоговый экзамен с прокторингом – механизмом контроля за честным выполнением проверочных работ и экзаменов.

Экзамен с прокторингом представляет собой тестирование, во время которого за вами через вебкамеру с микрофоном следит человек - проктор, также он следит и за вашим рабочим столом на вашем компьютере (для этого вам необходимо будет открыть доступ к нему на время сдачи). Во время данного экзамена пользоваться никакими материалами нельзя. Также запрещено куда-нибудь уходить, с кем-либо общаться во время экзамена, уводить взгляд с экрана компьютера. Общение с проктором происходит через чат. Для сдачи экзамена с прокторингом необходимо предварительно записаться. На данном курсе это можно было сделать с 4 декабря по 28 декабря с понедельника по пятницу с 9.00 до 23.00 и в субботу с 9.00 до 12.00. Для сдачи итогового экзамена необходимо на компьютер установить google chrome и расширение к нему Examus .

Когда я сдавал экзамен проктор потребовал от меня, чтобы я поднял мой ноутбук и показал ему весь свой стол, за которым я сидел, а также включить люстру, так как ему было темно и не видно, хотя у меня были включены лампа и торшер. Также для идентификации личности необходимо показать свой паспорт на вебкамеру и его сфотографировать и фото отправить.

После успешного освоения данного курса по почте высылают удостоверение о повышении квалификации. Данный курс я прошел полностью бесплатно. Система оценивания 100-балльная. Чтобы получить удостоверение о повышении квалификации, необходимо было набрать не менее 40% по практическим заданиям и не менее 60% по промежуточным тестам, тестированию по модулям и экзамену. К примеру, на экзамене с прокторингом я набрал 95 баллов. Для общения предусмотрен форум, где можно задать команде курса вопросы, высказать ей свое мнение по теме, обсудить материал с другими слушателями и помочь им в его понимании.

Для желающих зачесть пройденный онлайн-курс при освоении образовательной программы бакалавриата или специалитета в вузе предусмотрена уникальная для России возможность получения сертификатов, электронная версия которого размещается на сайте Санкт-Петербургского политехнического университета Петра Великого: http://open.spbstu.ru/02-cert/

В общем виде сертификат выглядит так:

Приложение к нему:

О курсе

Курс разработан Санкт-Петербургским политехническим университетом Петра Великого, Центром НТИ «Новые производственные технологии» на базе ИППТ СПбПУ совместно с мировым лидером в области ERP-систем SAP, ведущим отечественным Инжиниринговым центром CompMechLab при поддержке Северо-Западного регионального центра компетенций в области онлайн-обучения.

Предлагаемые в курсе материалы уникальны, публикуются в такой системной подаче впервые.

Из википедии:

Алексе́й Ива́нович Боровко́в (род. 7 июня 1955, Ленинград) - советский и российский ученый в области вычислительной механики и компьютерного инжиниринга, член-корреспондент Российской инженерной академии и Международной академии наук высшей школы (МАН ВШ), Почетный работник сферы образования Российской Федерации (2017).

Область научных интересов - вычислительная механика и компьютерный инжиниринг (Computer-Aided Engineering), мульти- и трансдисциплинарные компьютерные технологии для решения промышленных задач, передовые производственные технологии.

По инициативе А. И. Боровкова в 1987 году на кафедре «Механика и процессы управления» физико-механического факультета Политехнического университета организована учебная и научно-исследовательская лаборатория «Вычислительная механика» (Computational Mechanic Laboratory - CompMechLab), заведующим которой он стал. На базе УНИЛ «Вычислительная механика» затем были созданы Центр наукоемких компьютерных технологий (Centre of Excellence - первый в СПбПУ центр превосходства, 2003 г.), высокотехнологичная инжиниринговая spin-out компания ООО Лаборатория «Вычислительная механика» (2006 г.), малое инновационное предприятие ООО «Политех-Инжиниринг» (2011 г.) и Инжиниринговый центр «Центр компьютерного инжиниринга» СПбПУ (2013 г.).

В настоящее время группа компаний функционирует под общим брендом CompMechLab® (CML).

А. И. Боровков - лидер мегапроекта федерального значения по созданию Фабрик Будущего в России, представленного и поддержанного на расширенном заседании экспертного совета 21 июля 2016 года.

Научно-исследовательская, просветительская, инновационная и предпринимательская деятельность А. И. Боровкова многократно получала высокую оценку экспертного сообщества и была отмечена разнообразными частными, общественными и государственными премиями, среди которых: премия Правительства Санкт-Петербурга «За выдающиеся достижения в области высшего профессионального образования» - цикл работ «Подготовка конкурентоспособных специалистов нового поколения, обладающих компетенциями мирового уровня» в научной области «Механика, машиностроение, вычислительная механика и компьютерный инжиниринг» - в номинации «Научные достижения, способствующие повышению качества подготовки специалистов и кадров высшей квалификации» (2008); XI независимая бизнес-премия «Шеф года», реализуемая федеральной группой деловых проектов Chief Time и журналом «Человек Дела» (2017) и многие другие.

В 2017 году ООО Лаборатория «Вычислительная механика» (головная компания CompMechLab®) стала лауреатом национальной промышленной премии Российской Федерации «Индустрия».

ООО Лаборатория «Вычислительная механика» разработала цифровую мультидисциплинарную кросс-отраслевую платформу для создания глобально конкурентоспособной продукции нового поколения CML-Bench . Платформа CML-Bench предназначена для автоматизации ключевых инженерных процессов, связанных с мгновенной кастомизацией, цифровым проектированием, моделированием, виртуальными испытаниями и подготовкой всей необходимой производственной документации, посредством трансдисциплинарного и надотраслевого компьютерного инжиниринга. Платформа CML-Bench является основой для создания Цифровых Фабрик Будущего – систем комплексных технологических решений по производству продуктов от этапа формализации базовых принципов изделия до этапа создания «умного» цифрового двойника на основе цифрового проектирования и моделирования с применением передовых производственных технологий.

Компания работает на мировом технологическом фронтире с компаниями-лидерами в своих отраслях, что позволяет постоянно наращивать уровень своих компетенций и сохранять глобальную конкурентоспособность уже на протяжении 10 лет. В своей работе компания применяет уникальную собственную разработку – CML-Цифровую платформу CML-Bench, которая лежит в основе CML-Экспертной интеллектуальной системы CML-AI – «интеллектуального помощника» системного инженера. Это делает возможным интеграцию на одной виртуальной площадке широкого арсенала лучшего мирового программного обеспечения для решения мультидисциплинарных инженерных задач, инфраструктуры суперкомпьютерных вычислительных мощностей и инженеров с компетенциями мирового уровня.

Портфель продуктов ООО Лаборатория «Вычислительная механика»:

Создание «цифровых двойников» изделий и процессов;
- Цифровое проектирование и моделирование узлов и агрегатов, изделий и технологических процессов их производства;
- Проведение виртуальных испытаний конструкций и изделий;
- Исследования свойств материалов, ресурса конструкций, оценка технологических процессов;
- Проектирование и исследование изделий из композиционных материалов и композитных структур;
- Проектирование изделий под заданную технологию производства: литье, штамповка, фрезеровка, аддитивное производство.

Сотрудники CompMechLab® имеют многолетний успешный опыт выполнения работ по заказам: отечественных высокотехнологичных компаний: госкорпораций “Ростех”, “Росатом”, “Роскосмос”, “Газпром”, “Концерн ВКО “Алмаз-Антей”, Объединенная авиастроительная корпорация, Объединенная двигателестроительная корпорация, Объединенная ракетно-космическая корпорация, Объединенная судостроительная корпорация, а также компаний Ракетно-космическая корпорация “Энергия” им. С.П. Королёва, АВТОВАЗ, КАМАЗ, “Силовые машины”, “Северсталь”, “ВСМПО-АВИСМА”, ФГУП НАМИ, АО «Климов» и многих других зарубежных высокотехнологичных компаний: ABB, Airbus, Alcoa, Boeing, BMW Group (BMW, MINI, Rolls-Royce), Daimler, Ferrari, General Electric, General Motors, LG Electronics, Samsung, Schlumberger, Siemens, Volkswagen Group (Audi, Bugatti Automobiles, Porsche, Volkswagen), Weatherford и др. С 2017 года CompMechLab ведёт активную работу с китайскими автопроизводителями. В числе заказчиков такие компании как BAIC Corp, Chery Automobile Corporation, а также Центральный Китайский автомобильный институт China Automotive Technology and Reseach Center (CATARC). В числе компаний, включившихся в создание Цифровых Фабрик Будущего в партнёрстве с CompMechLab, предприятия российской автомобильной промышленности – ГНЦ РФ ФГУП НАМИ (в рамках реализации проекта государственного значения «Единая модульная платформа» («Кортеж»)), ПАО «УАЗ» (в рамках реализации проекта по созданию внедорожника нового поколения), производитель современных автобусов – ООО «Бакулин Моторс Групп», двигателестроительное предприятие ПАО «ОДК-Сатурн» (входит в Объединённую двигателестроительную корпорацию) и АО «Средне-Невский судостроительный завод» (входит в Объединенную судостроительную корпорацию); высокотехнологичные предприятия Республики Татарстан – АО «НПО «ОКБ им. М.П. Симонова», АО «Казанское моторостроительное производственное объединение», ОАО «Казанский вертолетный завод», ПАО «КАМАЗ»; на данный момент отобраны наиболее актуальные отраслевые и корпоративные проблемы-вызовы для создания Фабрики Будущего с Объединенной авиастроительной корпорацией (ОАК).

ООО Лаборатория «Вычислительная механика» работает на мировом технологическом «фронтире», с компаниями-лидерами в своих отраслях, что позволяет перманентно наращивать уровень своих компетенций и сохранять глобальную конкурентоспособность уже на протяжении 10 лет. Компания в своей работу применяет уникальную собственную разработку – CML-цифровую платформу CML-Bench, которая лежит в основе CML-интеллектуальной систему CML-AI –« интеллектуального помощника» системного инженера. Это делает возможным интеграцию на одной виртуальной площадке широкого арсенала лучшего мирового программного обеспечения для решения мультидисциплинарных инженерных задач, инфраструктуры суперкомпьютерных вычислительных мощностей и инженеров с компетенциями мирового уровня.

Все ли слушатели курсов могут похвастаться, что куратором их курса был такой человек, как Боровков А.И.!?

Если вы являетесь руководителем компании или инженером, то я рекомендую пройти курс "Технологии «Фабрик Будущего»". Использование передовых производственных технологий и цифровая трансформация компании повысит производительность труда и рентабельность компании. Именно технологии, описанные в данном курсе, смогут повысит темпы роста российской экономики и повысить уровень жизни населения.

Четвертая промышленная революция уже провозглашена, весь мир разными темпами движется к Индустрии 4.0, одним из результатов которой должна стать цифровая фабрика будущего, основанная на новом понимании эффективного производства. Согласно исследованиям Grand View Reseach, мировой рынок промышленного интернета вещей (IIoT) в 2016 году достиг $109 млрд, и ожидается, что к 2025 году он вырастет до $933,62 млрд.

Мировые промышленные гиганты на собственном опыте убедились, что фабрика нового образца - это сокращение расходов и повышение производительности за счет информатизации производства. Россия пока находится в самом начале этого пути, что, однако, не мешает ей совершить рывок и вырваться в лидеры. Отечественные компании выгодно отличаются от других игроков международного рынка сплавом научного инженерного подхода и серьезным промышленным базисом - наследием индустриального прошлого страны. Главное сейчас - не бояться перемен.

Мы движемся от встроенных систем к киберфизическим, которые позволят собирать и передавать информацию в любой форме и объеме из любого места. Это базис для так называемой сетевой культуры, которая лежит в основе цифрового производства.

Но что такое цифровое производство? Трактовок термина много. Эксперты определяют его и как автоматизацию производственного процесса, и как создание цифровых двойников продукта и процессов его производства, и как многоуровневую систему с датчиками, контроллерами, средствами передачи собираемых данных, аналитическими инструментами и др.

Я думаю, цифровое производство подразумевает диджитализацию промышленности, в результате которой решения основных задач, волновавших промышленников еще начиная с появления первых мануфактур, должны выйти на новый уровень. Среди них - снижение процента брака, уменьшение ошибок, вызванных человеческим фактором, оценка качества произведенного продукта и главное - массовое производство продукции по индивидуальным заказам. Для этого на предприятии должны быть полностью автоматизированы все производственные процессы: конструкторская разработка, технологическая подготовка производства, снабжение материалами и комплектующими, планирование производства, изготовление продукции и сбыт.

За последние 25 лет в экономически развитых странах достигнуты значительные успехи в направлении цифрового производства. Завод Philips по производству бритв в Голландии работает в темном помещении, где находятся 128 роботов. Завод Harley-Davidson сократил среднее время производства мотоциклов под заказ с 28 дней до 16 часов.

Надо перенимать подобный опыт зарубежных компаний, но, конечно, с учетом российских реалий.

Для многих отечественных промышленников сейчас фраза «цифровая фабрика будущего» звучит как плод разыгравшейся фантазии. Да, где-то на Западе есть заводы, на которых работают роботы, где-то оборудование используется на 90%, где-то система менеджмента завязана на производстве - где-то, но не у нас. В России, по нашему опыту, средняя загрузка оборудования - 30%. И живем, как работаем, - на те же 30%. А с чего начинать, чтобы запустить маховик перемен, непонятно - слишком уж большой разрыв.

На самом деле, если разложить весь путь к Индустрии 4.0 на логические этапы и начать последовательно двигаться вперед, у России есть все шансы не только догнать Запад, но и выбиться вперед, аккумулируя весь накопленный опыт и адаптируя его под себя. На мой взгляд, для перехода к Индустрии 4.0 необходимо, в первую очередь, выполнить три условия:

  • Компьютеризировать рабочие места и производственное оборудование;
  • Использовать современное программное обеспечение по подготовке производства (CAD/CAM/CAE/PDM), управлению производством (ERP, MES) и управлению ресурсами (ЕАМ, ТОиР);
  • Создать на промышленном предприятии единое информационное пространство, с помощью которого все автоматизированные системы управления предприятием, а также промышленное оборудование, производственный персонал смогут оперативно и своевременно обмениваться информацией.

Первым шагом для объединения всего вышеперечисленного в единую инфраструктуру может и должно стать использование систем MDC (Machine Data Collection - сбор машинных данных), которая позволяет мониторить работу всех производственных объектов (оборудование, рабочие места основных рабочих, сервисные службы и т. д) в целях управления производством. Это и есть фундамент для перехода к цифровому производству (компания автора, «Станкосервис», поставляет подобные системы. - Forbes ).

Системы мониторинга позволяют обходить «журнальные» методы получения информации, эти процессы автоматизируются, и станки, можно сказать, сами отчитываются о своей работе. В России до сих пор многие предприятия зависят от человеческого фактора - например, «лояльности» одного технолога или оператора. Наши люди привыкли работать на свой карман, а не на благо организации. MDC - это способ повысить эффективность и увеличить прибыль за счет контроля и прозрачности всех действий.

Внедрение системы мониторинга не требует больших финансовых и временных ресурсов. Оснастить парк из 100 станков, по нашему опыту, можно за 3-4 недели. Из российских предприятий, развивающих «цифровое производство» я бы выделил ПАО «ПКО Теплообменник» (Нижний Новгород), ВГУП ВНИИА им. Духова (Москва)», АО «Редуктор-ПМ» именно потому, что эти компании начали с MDC и сейчас ясно видят, куда двигаться дальше.

Начав с малого, можно перестроить всю систему. Но не стоит хвататься за что попало, это должен быть логичный и полноценный переход к концепции не столько цифрового производства с его отдельными решениями, сколько к цифровой компании. Нужно понять, что это не очередной этап совершенствования промышленной автоматики, а трансформация всего бизнеса: от процедуры изготовления деталей до способов привлечения клиента. Тут показателен опыт одного из наших клиентов - компании «Вертолеты России». Их грамотный переход к Индустрии 4.0 через формирование единого цифрового пространства с мониторингом работы и людей, и оборудования привел к изменению психологии труда - появилось понимание механизмов слаженной работы предприятия на результат, в которой важна синергия человеческого капитала и новых технологий.

Очевидно, что с переходом на цифровом производство будет уменьшаться необходимость в промежуточном менеджменте на производстве. Если раньше было много контролеров и мастер участка, отчитываясь мастеру цеха за срыв сроков, мог свалить вину на сервисные службы, а мастер цеха, отчитываясь начальнику производства, мог утверждать, что виновато старое оборудование… и т. д, то теперь благодаря системе мониторинга становится все прозрачно. Исказить реальность не получится. Объективная информация с производства доходит до руководителей быстро и без искажений. Далее, связывая воедино все производственные системы, большая часть решений будет приниматься автоматически, без участия человека. Конечно, это серьезно затронет организационную структуру предприятий и требования к квалификации новых кадров.

По прогнозам некоторых экспертов, фабрика будущего должна появиться в России к 2035 году. Уже утверждена «дорожная карта» Технет Национальной технологической инициативы, определяющая план развития таких технологий, как: цифровое моделирование и проектирование, индустриальный интернет, аддитивные технологии, робототехника и мехатроника. Но фабрика будущего включает в себя не только технологический аспект - интернет вещей и бигдата не решат всех проблем без эффективного инновационного менеджмента и новых бизнес-моделей.

С наступлением эры «цифрового» производства можно переходить к новым моделям управления, о которых так много говорят сейчас в узких кругах. В этом случае фраза «станок как сервис» станет реальностью. Система мониторинга сделает все подключенные станки глобальными, доступными для приема заказов, обмена информацией о плановой загрузке и производственных возможностях. На фабрике будущего виртуальный оператор будет управлять логистикой, выбирать оборудование с лучшими показателями. Станок как «интеллектуальный» субъект производства выходит на глобальный рынок и обязан конкурировать за счет качества, скорости и стоимости работ. Мы движемся именно к этому.

Развивая историю «станок как сервис», мы приходим к пониманию, что заводу вовсе не обязательно приобретать станки и заботиться об их состоянии. Станкостроительные предприятия, обладая инструментарием удаленного мониторинга, могут предоставлять станки, как сервис, обеспечивая своевременный ремонт, поставку запасных частей и пр. Стороной, обеспечивающей финансирование этой схемы будет банк. Все три стороны будут зарабатывать процент от продажи продукции конечному покупателю, что существенно повысит эффективность бизнеса и снизит промежуточную коррупцию. Все стороны имеют возможность удаленного мониторинга производства, что существенно снижает риски и обеспечивает заинтересованность сторон в конечном результате.

В заключение стоит добавить, что инновационный менеджмент для большинства предприятий не придет так быстро, как приходят технологии. Для немцев или японцев регламент - это хорошо, а для русского человека – повод проверить систему на прочность. Действовать надо итерационно, на каждом шаге показывая результат и пользу для персонала и бизнеса. Мы долго запрягаем, зато быстро едем.

Сложность механизмов, новых объектов и материалов с каждым годом повышается. Если еще в 80-е годы автовладельцы могли самостоятельно собрать и разобрать автомобиль, то сейчас найти поломку зачастую нельзя даже в сервис-центре. Требования к инженерам и конструкторам постоянно растут, а ошибки поджидают на каждом этапе работы.

Современные технологии дают возможность переносить большинство инженерных процессов в виртуальную реальность. Это позволяет смоделировать различные условия, в которых механизму придется работать.

В виртуальности можно за секунды проводить тысячи тестовых испытаний и изменять материалы, из которых состоят те или иные детали конструкции. Можно даже работать с теми материалами, которых пока нет в реальной жизни.

Такие инновации дали возможность превращать обычные фабрики и заводы в «фабрики будущего», где продукция будет производиться во много раз лучше, дешевле и быстрее, чем это делается сегодня на традиционных производствах.

В развитии таких фабрик заинтересованы уже на государственном уровне: недавно правительством была утверждена дорожная карта «Технет», и, согласно этому плану, к 2035 году в стране должны быть созданы как минимум 40 «фабрик будущего». Кроме того, появятся новые решения, которые позволят сделать отечественные компании более конкурентоспособными в высокотехнологичных отраслях промышленности. Это даст возможность российским предприятиям выйти на глобальные рынки.

Цифровой двойник

Цифровой двойник — информационная сущность, которая находится в виртуальном пространстве параллельно с живым объектом. Такие двойники «строят» параллельно с возведением самих объектов, поэтому в процессе проектирования, испытаний и тестовой эксплуатации эта система наполняется и изменяется.

«Цифровой двойник», например атомной электростанции, включает в себя не просто 3D-модель здания, а всю информацию о блоках, из которых она построена, приборах и их производителях вплоть до последнего винтика. Экосистема содержит многочисленные документы, например регламентную и сертификационную документацию и договоры с поставщиками всех комплектующих. Это удобно, ведь комплексное хранение всех данных помогает оперативно управлять состоянием предприятия, будь то атомная станция или завод по переработке нефти, находящийся за тысячи километров.

Photo by h heyerlein on Unsplash

Платформа 3DEXPERIENCE

Платформа 3DEXPERIENCE позволяет в реальном времени анализировать то, что происходит с конструкцией и производством, и предугадывать, как они будут вести себя в будущем.

С помощью цифровых макетов, созданных в CATIA и DELMIA, можно увидеть всю картину производства или строительства. Это повышает вероятность успеха создания работоспособного объекта и уменьшает число ошибок. Экосистема позволяет решать проблемы как на этапе расчетов и моделировании объектов и систем, так и при их строительстве и эксплуатации.

Photo by rawpixel.com on Unsplash

Решения Dassault Systèmes для проектирования систем дают разработчикам и инженерам платформу, работа в которой сокращает сроки создания. Комплекс использует единый подход к проектированию, который уменьшает объем затрат на разработку.

Платформа находит свое применение в различных отраслях. В частности, среда Cabletray 3D предназначена для разработки трехмерных электрических кабельных сетей, а библиотека Systems Cooling Library необходима при разработке систем охлаждения.

Системный инжиниринг

Понятие «системного инжиниринга» появилось всего 10-15 лет назад. Этот подход возник как ответ на усложнение современных технических устройств. В системном инжиниринге физический образ объекта связывается с множеством данных о системах, которые в него входят, и о том, как эти системы взаимодействуют друг с другом.

Например, мы проектируем новую подводную лодку. На простой модели мы можем увидеть, как ее детали связаны между собой, однако, как лодка будет вести себя в боевых условиях, понять невозможно, ведь она состоит из совокупности целого ряда систем: одна из них отвечает за жизнеобеспечение, другая — за запуск торпед, третья — за подводную навигацию и так далее. Эти системы должны работать взаимосвязано, они, так или иначе, влияют одна на другую, хотя каждая из них разрабатывается отдельным конструкторским бюро.

Раньше конструкция подводных лодок или других сложных изделий была проще, поэтому один главный инженер мог охватить всю их структуру. Теперь же объекты настолько сложны, что один человек просто не в состоянии переварить всю информацию, учесть все условия, в которых будет находиться конструкция.

Согласно концепции «Технет», решать новые мультидисциплинарные задачи, с которыми столкнулось современное производство, в будущем предстоит людям новых специальностей, например системным инженерам, обладающим знаниями на стыке сразу нескольких высокотехнологичных областей.

Виртуальные испытания

Виртуальные испытания нужны прежде всего, чтобы уменьшить общее количество «реальных» тестов при создании объектов или механизмов. С помощью виртуальных испытаний высвобождаются денежные и временные ресурсы, которые можно потратить на конструирование новых изделий.

Хороший пример можно найти в автомобилестроении. Перед тем как запустить новую модель в производство, необходимо проверить ее безопасность. Для этого нужны тысячи краш-тестов, в том числе отдельных элементов — как крупных вроде кузова, так и небольших. Каждое такое испытание требует уничтожить десятки образцов, отнимает массу времени, поэтому базовое тестирование можно проводить в виртуальной среде. Для этого достаточно смоделировать те или иные усилия, которые влияют на деталь в момент аварии, а компьютер сам посчитает возможные последствия.

Таких виртуальных испытаний можно проводить тысячи, даже десятки тысяч. Основная их цель — не делать нерабочие прототипы, а реальные тесты проводить только на последних двух-трех удачных объектах.

Photo by Eddie Kopp on Unsplash

Комплекс Simpoe-Mold помогает снизить потребности в дорогостоящих и трудоемких физических испытаниях. Решение дает инженерам возможность прогнозировать и предотвращать появление дефектов на ранних этапах проектирования, что исключает переделку брака и в целом повышает качество деталей.

Кроме того, с помощью продуктов от SIMULIA возможно оценивать усталость и износоустойчивость для прогнозирования и анализа жизненного цикла конструкций и материалов, а также учитывать затраты на производство.

CATIA для технологии 3D-печати

CATIA представляет Function Driven Generative Designer — комплексный набор приложений для освоения и создания органических форм для технологии 3D-печати. Такая система позволяет существенно сократить конечную стоимость продукта.

Пользователи комплекса получают доступ к системе сбора всех данных. Программный продукт оказывает помощь конструкторам на этапе моделирования детали, дает возможность с легкостью выполнить проверку перед переходом к производству.

Аддитивные технологии

Метод 3D-печати уже хорошо известен на рынке и активно используется в разных сферах. Однако когда речь заходит об использовании деталей, изготовленных таким способом, в реальных механизмах, например в автомобилях, то конструкторам стоит учитывать, что точность таких деталей будет недостаточна. Дело в том, что во время печати детали деформируются относительно изначальной модели, а прочность изделия снижается.

С помощью современных инструментов проектирования, в частности, с помощью виртуальных испытаний, можно не только понять, как должна в теории выглядеть напечатанная деталь, но и просчитать заранее, с какими дефектами она будет изготовлена в реальной жизни.

Для этого конструктору нужно скорректировать изначальную модель, исходя из условий, в которые она попадет в процессе печати. Это очень похоже на виртуальный краш-тест, только материалы в ходе испытания подвержены воздействиям со стороны самого принтера.

Разработка новых материалов

Современные технологии дали инженерам инструменты, которые позволяют моделировать не только конструкции, но и молекулы материалов. Так можно совершенствовать, к примеру, автомобильные масла. В них можно добавлять многочисленные присадки, которые будут, например, защищать детали машины от коррозии.

Компании каждый год выпускают на рынок десятки видов масел, но для того чтобы их пустить в производство, надо провести десятки тысяч испытаний с новыми материалами. Для реальных исследований, чтобы смешивать разные компоненты и их испытывать, нужно много времени и ингредиентов.

Это же касается и более сложных материалов, в том числе конструкционных, необходимых для 3D-печати и даже лекарств. Благодаря виртуальному конструированию новых веществ и виртуальным тестам работы даже в фармакологии могут проходить быстро и со значительно меньшими затратами.

Кроме того, система экономит и человеческий ресурс, так как позволяет записывать характеристики получающихся материалов, не останавливая процесс экспериментов, что существенно облегчает работу лаборантов.

Создание новых материалов, в том числе передовых суперсплавов, полимеров и композиционных материалов относятся, согласно дорожной карте «Технет», к «сквозным технологиям» — передовым производственным технологиям будущего.